{"title":"Generating Markov Logic Networks Rulebase Based on Probabilistic Latent Semantics Analysis","authors":"Shan Cui;Tao Zhu;Xiao Zhang;Liming Chen;Lingfeng Mao;Huansheng Ning","doi":"10.26599/TST.2022.9010072","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 5","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10130021/10130032.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10130032/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
基于概率潜在语义分析的马尔可夫逻辑网络规则库生成
人类活动识别(HAR)已成为人们关注的主题,在日常生活中发挥着重要作用。HAR使用传感器设备来收集用户行为数据,获取人类活动信息并对其进行识别。马尔可夫逻辑网络(MLN)作为知识和数据的有效结合,在HAR中得到了广泛的应用。MLN能够解决复杂性和不确定性问题,具有良好的知识表达能力。然而,MLN结构学习相对较弱,需要大量的计算和存储资源。从本质上讲,MLN结构是从当前场景中的传感器数据导出的。假设传感器数据可以被有效地切片,并且切片后的数据可以转换为语义规则,则可以获得MLN结构。为此,我们提出了一种基于概率潜在语义分析的规则库构建方案,为MLN学习提供语义规则库。这样的规则库可以减少MLN结构学习所需的时间。我们将规则库构建方案应用于单人室内活动识别,并证明该方案可以有效地减少MLN的学习时间。此外,我们还评估了规则库构建方案的参数,以检查其稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。