{"title":"Autonomous Vehicles Testing Considering Utility-Based Operable Tasks","authors":"Jingwei Ge;Jiawei Zhang;Yi Zhang;Danya Yao;Zuo Zhang;Rui Zhou","doi":"10.26599/TST.2022.9010037","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 5","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10130021/10130026.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10130026/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
考虑基于效用的可操作任务的自动驾驶汽车测试
自动驾驶汽车的虚拟仿真测试正逐渐被接受为测试自动驾驶汽车驾驶策略可行性的强制性方法。主流方法侧重于通过从自然驾驶数据集中提取关键场景来提高测试效率。然而,他们的测试任务中定义的关键性是基于固定的假设,所获得的场景不会对具有不同策略的AV构成挑战。为了填补这一空白,我们提出了一种基于可操作测试任务的智能测试方法。我们发现,周围车辆的驾驶行为对AV有着至关重要的影响,这可以用来调整测试任务的难度,以发现更具挑战性的场景。为了对不同的驾驶行为进行建模,我们将行为效用函数与二元驾驶策略相结合。此外,我们构建了一个车辆交互模型,在此基础上从理论上分析了驾驶行为的改变对测试任务难度的影响。最后,通过调整SV的策略,我们可以在有限数量的模拟中测试不同的AV时生成更多的拐角情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。