Quantitative Structure-activity Relationship Studies and Nonlinear Optical Properties of 2-Phenylbenzofuran Derivatives: A Density Functional Theory Study
N. Benhalima, M. Touhami, F. Khelfaoui, Fatima Yahia Cherif, A. Chouaih
{"title":"Quantitative Structure-activity Relationship Studies and Nonlinear Optical Properties of 2-Phenylbenzofuran Derivatives: A Density Functional Theory Study","authors":"N. Benhalima, M. Touhami, F. Khelfaoui, Fatima Yahia Cherif, A. Chouaih","doi":"10.22036/PCR.2021.292515.1931","DOIUrl":null,"url":null,"abstract":"Density Functional Theory calculations, in the ground state of 2-Phenylbenzofuran, were carried out using the GGA-PBE, PBV86 and meta-GGA-TPSS hybrid functionals with 6-31G (d, p) as a basis set. First, theoretical calculations were performed using these functionals to obtain the stable conformer of the molecule. In addition, Mulliken population natural population and natural bond orbital analyses were calculated. The molecular electrostatic potential, band gap energies, global, local chemical reactivity descriptors and non-linear optical (NLO) properties were studied. Additionally, the NLO properties of 2-Phenylbenzofuran and those of its derivatives were investigated by GGA-PBE/6-31G (d,p) level of theory. The first-order hyperpolarizability value of all 2-Phenylbenzofuran derivatives was found within the range extending from 4.00 × 10-30 to 43.57 × 10-30 (esu). It indicated that they possess remarkable NLO properties. In addition, a multiple linear regression procedure was used to envisage the relationships between molecular descriptors and the activity of 2-Phenylbenzofuran derivatives; the quantitative structure-activity relationship (QSAR) studies were performed on them using quantum descriptors. The QSAR was applied to determine a correlation between the various physico-chemical parameters of the studied compounds and their biological activities. The statistical quality of the QSAR models was assessed using statistical parameters, i.e. R2, R2adj and R2cv.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"10 1","pages":"105-125"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.292515.1931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Density Functional Theory calculations, in the ground state of 2-Phenylbenzofuran, were carried out using the GGA-PBE, PBV86 and meta-GGA-TPSS hybrid functionals with 6-31G (d, p) as a basis set. First, theoretical calculations were performed using these functionals to obtain the stable conformer of the molecule. In addition, Mulliken population natural population and natural bond orbital analyses were calculated. The molecular electrostatic potential, band gap energies, global, local chemical reactivity descriptors and non-linear optical (NLO) properties were studied. Additionally, the NLO properties of 2-Phenylbenzofuran and those of its derivatives were investigated by GGA-PBE/6-31G (d,p) level of theory. The first-order hyperpolarizability value of all 2-Phenylbenzofuran derivatives was found within the range extending from 4.00 × 10-30 to 43.57 × 10-30 (esu). It indicated that they possess remarkable NLO properties. In addition, a multiple linear regression procedure was used to envisage the relationships between molecular descriptors and the activity of 2-Phenylbenzofuran derivatives; the quantitative structure-activity relationship (QSAR) studies were performed on them using quantum descriptors. The QSAR was applied to determine a correlation between the various physico-chemical parameters of the studied compounds and their biological activities. The statistical quality of the QSAR models was assessed using statistical parameters, i.e. R2, R2adj and R2cv.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.