M. Frappa, A. Brunetti, E. Drioli, Z. Cui, Jun Pan, F. Macedonio
{"title":"Membrane Condenser for Particulate Abatement from Waste-Gaseous Streams","authors":"M. Frappa, A. Brunetti, E. Drioli, Z. Cui, Jun Pan, F. Macedonio","doi":"10.22079/JMSR.2019.112686.1282","DOIUrl":null,"url":null,"abstract":"Membrane Condenser (MC) is a novel membrane contactor operation recently investigated for the valorization of industrial waste gaseous streams. In particular, until now, it was applied for water recovery from flue gas, cooling tower plumes, etc. More recently, its effectiveness and flexibility in contaminants (such as, NH3 , HF, SO2 ) removal and control from waste gaseous streams was also proved. In the present work, the application of membrane condenser for water recovery as well as microparticles removal from gaseous streams are presented. Experimental tests showed that microparticles did not affect membrane condenser performance, neither in terms of water recovery nor in term of fouling. Moreover, the carried-out tests revealed also that the complete retention of particles can be achieved only through the proper choice of the membrane, with pore size lower than particles diameter.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"81-89"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.112686.1282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
Abstract
Membrane Condenser (MC) is a novel membrane contactor operation recently investigated for the valorization of industrial waste gaseous streams. In particular, until now, it was applied for water recovery from flue gas, cooling tower plumes, etc. More recently, its effectiveness and flexibility in contaminants (such as, NH3 , HF, SO2 ) removal and control from waste gaseous streams was also proved. In the present work, the application of membrane condenser for water recovery as well as microparticles removal from gaseous streams are presented. Experimental tests showed that microparticles did not affect membrane condenser performance, neither in terms of water recovery nor in term of fouling. Moreover, the carried-out tests revealed also that the complete retention of particles can be achieved only through the proper choice of the membrane, with pore size lower than particles diameter.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.