Design of Rotor Magnetic Barrier Structure of Built-in Permanent Magnet Motor Based on Taguchi Method

Shengnan Wu;Xianwen Pang;Wenming Tong;Yingcong Yao
{"title":"Design of Rotor Magnetic Barrier Structure of Built-in Permanent Magnet Motor Based on Taguchi Method","authors":"Shengnan Wu;Xianwen Pang;Wenming Tong;Yingcong Yao","doi":"10.30941/CESTEMS.2023.00018","DOIUrl":null,"url":null,"abstract":"In this paper, a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example, and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge. This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor, thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor. At the same time, Taguchi method is used to optimize the structural parameters of the added magnetic barrier. In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect, a simple equivalent magnetic network (EMN) model considering the uneven saturation of rotor magnetic bridge is established in this paper, and the initial values of optimization factors are selected based on this model. Finally, the no-load back EMF waveform distortion rate, torque ripple and output torque of the optimized motor are compared and analyzed, and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed. The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10172142/10134524.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10134524/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example, and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge. This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor, thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor. At the same time, Taguchi method is used to optimize the structural parameters of the added magnetic barrier. In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect, a simple equivalent magnetic network (EMN) model considering the uneven saturation of rotor magnetic bridge is established in this paper, and the initial values of optimization factors are selected based on this model. Finally, the no-load back EMF waveform distortion rate, torque ripple and output torque of the optimized motor are compared and analyzed, and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed. The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于田口法的内置永磁电机转子磁屏障结构设计
本文以20kW车载内置永磁同步电机为例,在电机转子上增加了磁屏障结构,解决了转子侧磁桥饱和不均匀的问题。这种结构通过影响电机转子的内部磁通路径,改善了电机的气隙磁通密度波形,从而改善了电机空载反电动势波形的正弦值,降低了电机的转矩脉动。同时,采用田口法对添加磁屏障的结构参数进行了优化。为了便于分析其不均匀饱和现象,提高优化效果,本文建立了一个考虑转子磁桥不均匀饱和的简单等效磁网络模型,并在此模型的基础上选取了优化因子的初值。最后,对优化后的电机空载反电势波形畸变率、转矩脉动和输出转矩进行了比较分析,并分析了磁栅结构参数对电机电磁性能的影响。结果表明,优化后的电机在降低空载反电动势波形畸变率和转矩脉动的基础上,不能尽可能地改变电机的输出转矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of Field Weakening Control Strategies of Permanent Magnet Synchronous Motors Content Performance and Safety Improvement of Induction Motors Based on Testing and Evaluation Standards Review of Thermal Design of SiC Power Module for Motor Drive in Electrical Vehicle Application Model-Free Speed Control of Single-Phase Flux Switching Motor with an Asymmetrical Rotor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1