{"title":"In Situ Evidence of Low-Level Atmospheric Responses to the Oyashio Front in Early Spring","authors":"Y. Kawai, H. Nishikawa, E. Oka","doi":"10.2151/JMSJ.2019-024","DOIUrl":null,"url":null,"abstract":"Previous modeling studies have indicated that the Oyashio front in the subarctic Pacific Ocean significantly affects the atmosphere on mesoto basin scales; however, there were no in situ observations that captured oceanic imprints on the atmosphere in this region as far as the authors know. We present in situ evidence of atmospheric responses to the Oyashio front by using a total of 103 radiosondes launched around the Oyashio front in April 2013 with continuous surface meteorology and ceilometer observations. Composite profiles showed that the lowlevel atmosphere below 1000 m was statically stable on the cold side of the Oyashio front, but unstable and mixed on the warm side. In the atmosphere on the warm side, the relative humidity dropped sharply at an altitude of around 1000 m, an indication that the mean cloud top was at this altitude. While the frequency of cloud base height peaked at 50 – 100 m in the cold areas, cloud bases were distributed at higher altitudes in the warm areas. These differences in the atmospheric boundary layer and cloud base heights across the front were clearer under conditions of southerly winds compared with those of northerly winds. Above a local sea surface temperature minimum with a width of approximately 400 km, where the ocean mixed layer depth is known to reach a local maximum, a large horizontal air temperature gradient was observed below an altitude of 1000 m. This horizontal gradient corresponded to a sea level pressure (SLP) anomaly of 1.2 hPa, comparable to observations of SLP anomalies in the Kuroshio Extension region. Furthermore, we found that narrow warm ocean streamers moistened the overlying atmosphere, affecting downward longwave radiation. Over the wide streamer located between 146.4°E and 147.0°E on 5 April, the near-surface atmospheric properties were largely different over the western half and the eastern half.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"97 1","pages":"423-438"},"PeriodicalIF":2.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2019-024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 7
Abstract
Previous modeling studies have indicated that the Oyashio front in the subarctic Pacific Ocean significantly affects the atmosphere on mesoto basin scales; however, there were no in situ observations that captured oceanic imprints on the atmosphere in this region as far as the authors know. We present in situ evidence of atmospheric responses to the Oyashio front by using a total of 103 radiosondes launched around the Oyashio front in April 2013 with continuous surface meteorology and ceilometer observations. Composite profiles showed that the lowlevel atmosphere below 1000 m was statically stable on the cold side of the Oyashio front, but unstable and mixed on the warm side. In the atmosphere on the warm side, the relative humidity dropped sharply at an altitude of around 1000 m, an indication that the mean cloud top was at this altitude. While the frequency of cloud base height peaked at 50 – 100 m in the cold areas, cloud bases were distributed at higher altitudes in the warm areas. These differences in the atmospheric boundary layer and cloud base heights across the front were clearer under conditions of southerly winds compared with those of northerly winds. Above a local sea surface temperature minimum with a width of approximately 400 km, where the ocean mixed layer depth is known to reach a local maximum, a large horizontal air temperature gradient was observed below an altitude of 1000 m. This horizontal gradient corresponded to a sea level pressure (SLP) anomaly of 1.2 hPa, comparable to observations of SLP anomalies in the Kuroshio Extension region. Furthermore, we found that narrow warm ocean streamers moistened the overlying atmosphere, affecting downward longwave radiation. Over the wide streamer located between 146.4°E and 147.0°E on 5 April, the near-surface atmospheric properties were largely different over the western half and the eastern half.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.