An enhanced krill herd optimization technique used for classification problem

Firas Al-Mashhadani, Ibrahim Al-Jadir, Qusay S. Alsaffar
{"title":"An enhanced krill herd optimization technique used for classification problem","authors":"Firas Al-Mashhadani, Ibrahim Al-Jadir, Qusay S. Alsaffar","doi":"10.22630/PNIKS.2021.30.2.30","DOIUrl":null,"url":null,"abstract":"In this paper, this method is intended to improve the optimization of the classification problem in machine learning. The EKH as a global search optimization method, it allocates the best representation of the solution (krill individual) whereas it uses the simulated annealing (SA) to modify the generated krill individuals (each individual represents a set of bits). The test results showed that the KH outperformed other methods using the external and internal evaluation measures.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/PNIKS.2021.30.2.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, this method is intended to improve the optimization of the classification problem in machine learning. The EKH as a global search optimization method, it allocates the best representation of the solution (krill individual) whereas it uses the simulated annealing (SA) to modify the generated krill individuals (each individual represents a set of bits). The test results showed that the KH outperformed other methods using the external and internal evaluation measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于分类问题的改进磷虾群优化技术
在本文中,该方法旨在改进机器学习中分类问题的优化。EKH作为一种全局搜索优化方法,它分配解决方案的最佳表示(磷虾个体),而它使用模拟退火(SA)来修改生成的磷虾个体(每个个体代表一组比特)。试验结果表明,该方法在外部和内部评价指标上均优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Review Engineering and Environmental Sciences
Scientific Review Engineering and Environmental Sciences Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
1.50
自引率
0.00%
发文量
24
审稿时长
26 weeks
期刊介绍: Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.
期刊最新文献
Enhancement of tensile performance of concrete by using synthetic polypropylene fibers Labor costs in a construction company in the Czech Republic – a case study A systematic review of clay shale research development for slope construction Implementing GIS and linear regression models to investigate partial building failures Evaluation of physical and mechanical properties of cement-treated base incorporating crushed waste tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1