SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES

A. Deshpande, P. Patavardhan
{"title":"SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES","authors":"A. Deshpande, P. Patavardhan","doi":"10.21917/IJIVP.2016.0198","DOIUrl":null,"url":null,"abstract":"Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP) method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR) and structural similarity index (SSIM) with state-of-the-art super resolution (SR) algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-tonoise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"7 1","pages":"1362-1365"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2016.0198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP) method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR) and structural similarity index (SSIM) with state-of-the-art super resolution (SR) algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-tonoise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非合作虹膜图像的单帧超分辨率
图像超分辨率是一种提高图像分辨率的技术,在生物识别、卫星成像、高清电视、医学成像等领域有着重要的应用。远程捕获虹膜识别系统经常受到捕获虹膜图像分辨率低和焦距差的困扰。这些都会降低虹膜识别的性能。本文提出了一种增强迭代反投影(EIBP)方法,用于超分辨远距离虹膜极坐标图像。通过比较峰值信噪比(PSNR)和结构相似指数(SSIM)与最先进的超分辨率(SR)算法,在CASIA远程虹膜数据库上对所提方法的性能进行了测试和分析。通过增加上采样因子进一步分析。性能分析表明,该方法优于现有算法,峰值信噪比提高约0.1 ~ 1.5 dB。实验结果表明,该方法适用于超分辨远距离虹膜极化图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1