CATEGORIZATION OF LUNG CARCINOMA USING MULTILAYER PERCEPTRON IN OUTPUT LAYER

S. Karthigai, K. Sundaram
{"title":"CATEGORIZATION OF LUNG CARCINOMA USING MULTILAYER PERCEPTRON IN OUTPUT LAYER","authors":"S. Karthigai, K. Sundaram","doi":"10.21917/ijsc.2020.0288","DOIUrl":null,"url":null,"abstract":"Data mining techniques used in many applications as there is an incredible growth in records and it is not feasible to find a solution manually. Amongst them, the medical records in data mining gains more popularity and have many missed values due to emergency cases or complicated situation etc. These missing values have a great influence in the desired output. The traditional mining procedure has to be enhanced to handle that between them and adjust the parameters to minimize the errors. The activation function in the neuron performs the non-linear transformation function making it capable to learn and perform more complex tasks. This function plays a vital role in the output process. This work focus on this function and made some enhancement by applying multi logit regression with Maximum A posteriori method in activation function to handle multi-class classification The proposed Enhanced Activation Function in Multi layer Perceptron is implemented in WEKA 3.9.6. and is compared with traditional MLP with suitable evaluation metrics.","PeriodicalId":30616,"journal":{"name":"ICTACT Journal on Soft Computing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijsc.2020.0288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data mining techniques used in many applications as there is an incredible growth in records and it is not feasible to find a solution manually. Amongst them, the medical records in data mining gains more popularity and have many missed values due to emergency cases or complicated situation etc. These missing values have a great influence in the desired output. The traditional mining procedure has to be enhanced to handle that between them and adjust the parameters to minimize the errors. The activation function in the neuron performs the non-linear transformation function making it capable to learn and perform more complex tasks. This function plays a vital role in the output process. This work focus on this function and made some enhancement by applying multi logit regression with Maximum A posteriori method in activation function to handle multi-class classification The proposed Enhanced Activation Function in Multi layer Perceptron is implemented in WEKA 3.9.6. and is compared with traditional MLP with suitable evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输出层基于多层感知器的肺癌分类
数据挖掘技术在许多应用程序中使用,因为记录的增长令人难以置信,并且手动寻找解决方案是不可行的。其中,数据挖掘中的医疗记录越来越受欢迎,但由于病例紧急或情况复杂等原因,存在许多缺失价值。这些缺失值对期望的输出有很大的影响。必须改进传统的挖掘程序来处理它们之间的关系,并调整参数以使误差最小化。神经元中的激活函数执行非线性转换函数,使其能够学习和执行更复杂的任务。这个函数在输出过程中起着至关重要的作用。本文针对该函数进行了一些增强,在激活函数中应用了多logit回归和最大A后测方法来处理多类分类。本文提出的多层感知器中的增强激活函数在WEKA 3.9.6中实现。并以合适的评价指标与传统MLP进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COMPARATIVE ANALYSIS OF HUMAN INTERACTION PATTERN MINING APPROACHES DEEP LEARNING APPROACHES FOR ANSWER SELECTION IN QUESTION ANSWERING SYSTEM FOR CONVERSATION AGENTS COLLABORATIVE NETWORK SECURITY MANAGEMENT SYSTEM BASED ON ASSOCIATION MINING RULE OPINION MINING AND SENTIMENT CLASSIFICATION: A SURVEY CATEGORIZATION OF LUNG CARCINOMA USING MULTILAYER PERCEPTRON IN OUTPUT LAYER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1