{"title":"Green Synthesis of Zinc Oxide Nanoparticles using Garlic skin extract and Its Characterization","authors":"S. Modi, M. Fulekar","doi":"10.22052/JNS.2020.01.003","DOIUrl":null,"url":null,"abstract":"Plant-mediated synthesis of metal oxide nanoparticles is a promising alternative to the traditional method of physical and chemical synthesis. In this paper, we report the green synthesis of zinc oxide nanoparticles (ZnONPs) by a biological method. During the study, Zinc oxide nanoparticles were synthesized by Allium sativum skin (garlic skin) extract. Formation of zinc oxide nanoparticles has been confirmed by UV-visible spectroscopy, UV diffuse reflectance spectroscopy (UV-DRS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope with Energy dispersive X-ray studies (EDX) and transmission electron microscope (TEM), Atomic force Microscopy (AFM), Brunauer-Emmet-Teller (BET), Thermogravimetric analysis (TGA). UV-vis spectroscopy confirms the synthesis of zinc oxide nanoparticles and showed the characteristic of absorption peak at 370nm. The scanning electron microscope and Transmission electron microscope confirms the formation of the rod and hexagonal shaped nanoparticles having average size 7.77 nm. Energy dispersive X-ray analysis states the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles synthesized using garlic skin are expected to have applications in biotechnology, biomedical, catalysis, coatings, sensors and water remediation. This green approach for the synthesis is a cheap, novel, eco friendly and convenient method.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"20-27"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Plant-mediated synthesis of metal oxide nanoparticles is a promising alternative to the traditional method of physical and chemical synthesis. In this paper, we report the green synthesis of zinc oxide nanoparticles (ZnONPs) by a biological method. During the study, Zinc oxide nanoparticles were synthesized by Allium sativum skin (garlic skin) extract. Formation of zinc oxide nanoparticles has been confirmed by UV-visible spectroscopy, UV diffuse reflectance spectroscopy (UV-DRS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope with Energy dispersive X-ray studies (EDX) and transmission electron microscope (TEM), Atomic force Microscopy (AFM), Brunauer-Emmet-Teller (BET), Thermogravimetric analysis (TGA). UV-vis spectroscopy confirms the synthesis of zinc oxide nanoparticles and showed the characteristic of absorption peak at 370nm. The scanning electron microscope and Transmission electron microscope confirms the formation of the rod and hexagonal shaped nanoparticles having average size 7.77 nm. Energy dispersive X-ray analysis states the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles synthesized using garlic skin are expected to have applications in biotechnology, biomedical, catalysis, coatings, sensors and water remediation. This green approach for the synthesis is a cheap, novel, eco friendly and convenient method.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.