Study of the Physicochemical Properties and Antimicrobial Activities of Nanoparticles Containing β-Cyclodextrin and Geranial

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanostructures Pub Date : 2021-01-01 DOI:10.22052/JNS.2021.01.020
M. Maleki, Z. Hadian, K. Abdi, Paliz Koohy-Kamaly, F. Bahmanyar
{"title":"Study of the Physicochemical Properties and Antimicrobial Activities of Nanoparticles Containing β-Cyclodextrin and Geranial","authors":"M. Maleki, Z. Hadian, K. Abdi, Paliz Koohy-Kamaly, F. Bahmanyar","doi":"10.22052/JNS.2021.01.020","DOIUrl":null,"url":null,"abstract":"In general, β-cyclodextrin (β-CD) is widely used in various technologies of the food industries. The aims of this study were preparation, characterization and optimization of a novel nanosize formulation of β-CD NPs loaded with GR. In the current study optimum conditions for maximum encapsulation efficiency and loading of geraniol using response surface methodology (RSM) was assessed. Furthermore, the in-vitro antimicrobial activities against S. aureus, B. cereus, S. enteritidis, E. coli, C. albicans and A. niger were studied. The present study is the first to investigate the antimicrobial activity of the GR inclusion complexes in nanosize formulations. The GR complexes were evaluated using scanning electron microscopy (SEM), infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Furthermore, antimicrobial activity of the inclusion complexes (IC) against bacteria and fungi were assessed. Minimum inhibitory concentrations (MIC) and inhibition zones of the GR-β-CD inclusion complexes were calculated using agar/broth dilution and agar well-diffusion methods. The EE and loading values of the optimized formulation included 87.25 and 10.45%, respectively, with a size distribution of 117 nm ±1 and appropriate particle size distribution (PDI). Moreover, SEM, IR and DSC verified fabrication of inclusion complexes between GR and β-CD. The inhibition zones of β-CD-GR complexes were recorded as the following order: Bacillus cereus > Staphylococcus aureus > Salmonella entritidis > Escherichia coli. The RSM technique allowed to prepare geraniol nanoinclusion complexes using β-cyclodextrin with optimum responses. The antimicrobial activity of GR highly enhanced after efficient complexation. This study generates appropriate information for application of inclusion complexes of GR.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"189-201"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In general, β-cyclodextrin (β-CD) is widely used in various technologies of the food industries. The aims of this study were preparation, characterization and optimization of a novel nanosize formulation of β-CD NPs loaded with GR. In the current study optimum conditions for maximum encapsulation efficiency and loading of geraniol using response surface methodology (RSM) was assessed. Furthermore, the in-vitro antimicrobial activities against S. aureus, B. cereus, S. enteritidis, E. coli, C. albicans and A. niger were studied. The present study is the first to investigate the antimicrobial activity of the GR inclusion complexes in nanosize formulations. The GR complexes were evaluated using scanning electron microscopy (SEM), infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Furthermore, antimicrobial activity of the inclusion complexes (IC) against bacteria and fungi were assessed. Minimum inhibitory concentrations (MIC) and inhibition zones of the GR-β-CD inclusion complexes were calculated using agar/broth dilution and agar well-diffusion methods. The EE and loading values of the optimized formulation included 87.25 and 10.45%, respectively, with a size distribution of 117 nm ±1 and appropriate particle size distribution (PDI). Moreover, SEM, IR and DSC verified fabrication of inclusion complexes between GR and β-CD. The inhibition zones of β-CD-GR complexes were recorded as the following order: Bacillus cereus > Staphylococcus aureus > Salmonella entritidis > Escherichia coli. The RSM technique allowed to prepare geraniol nanoinclusion complexes using β-cyclodextrin with optimum responses. The antimicrobial activity of GR highly enhanced after efficient complexation. This study generates appropriate information for application of inclusion complexes of GR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含β-环糊精和香叶醛纳米颗粒的理化性质及抗菌活性研究
总的来说,β-环糊精(β-CD)广泛应用于食品工业的各种技术中。本研究的目的是制备、表征和优化一种新型的纳米级载GR β-CD NPs配方。本研究利用响应面法(RSM)评价了香叶醇包封和载药的最佳条件。此外,还研究了其对金黄色葡萄球菌、蜡样芽孢杆菌、肠炎葡萄球菌、大肠杆菌、白色念珠菌和黑曲霉的体外抑菌活性。本研究首次研究了纳米级配方中GR包合物的抗菌活性。采用扫描电镜(SEM)、红外光谱(IR)和差示扫描量热法(DSC)对GR配合物进行了评价。此外,还研究了包合物对细菌和真菌的抑菌活性。采用琼脂/肉汤稀释法和琼脂孔扩散法计算GR-β-CD包合物的最小抑制浓度(MIC)和抑制区。优化后的配方EE和负载值分别为87.25和10.45%,粒径分布为117 nm±1,粒径分布(PDI)适宜。此外,SEM、IR和DSC验证了GR与β-CD之间包合物的制备。β-CD-GR复合物的抑菌区顺序为:蜡样芽孢杆菌>金黄色葡萄球菌>肠炎沙门氏菌>大肠杆菌。采用RSM技术制备香叶醇纳米包合物,反应最佳。GR经高效络合后,抗菌活性显著增强。本研究为GR包合物的应用提供了适当的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
期刊最新文献
Assembling a Bunch of Transition Metals Oxides on Sodium Montmorillonite Layer for Anionic Polymerization of Butyl Methyl Acrylate Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique Facile Synthesis of Fe/ZnO Hollow Spheres Nanostructures by Green Approach for the Photodegradation and Removal of Organic Dye Contaminants in Water Nanostructured Tin Sulfide Thin Films: Preparation via Chemical Bath Deposition and Characterization Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1