The flow and mass transfer characteristics of concentric gas-liquid flow in an advanced static mixer

IF 1 4区 工程技术 Q4 CHEMISTRY, APPLIED Chemical Industry & Chemical Engineering Quarterly Pub Date : 2021-01-01 DOI:10.2298/ciceq191213024m
Huibo Meng, Zhonggen Li, Yanfang Yu, Mengqi Han, Shuning Song, Xiu-Hui Jiang, Zongyong Wang, Jianhua Wu
{"title":"The flow and mass transfer characteristics of concentric gas-liquid flow in an advanced static mixer","authors":"Huibo Meng, Zhonggen Li, Yanfang Yu, Mengqi Han, Shuning Song, Xiu-Hui Jiang, Zongyong Wang, Jianhua Wu","doi":"10.2298/ciceq191213024m","DOIUrl":null,"url":null,"abstract":"The fluid dynamic and mass transfer characteristics of concentric upward gas-liquid flow were studied in an industrial static mixer with four equally spaced helical inserts (FKSM). The numerical simulations of the gas volume fraction in a Kenics mixer was in good agreement with the numerical and experimental results provided by Rabha et al. The characteristics of radial gas void fraction and local mass transfer coefficients in the FKSM were evaluated under different operating conditions. The velocity profiles of the concentric air phase accelerated by the bubble forces first became sharp and narrow until z/l = = -3.27 and then slowly decreased and stabilized at z/l = -1.5 before entering the first mixing element. Some extra unimodal profile of radial gas holdup gradually generated near the rectangle cross-sections of the mixing elements. The ?G gradually enlarged from r/R = 0.2 to r/R = 0.55 and then weakened from r/R = 0.65 to r/R = 0.874. The air void fractions in the bulk flow region decreased with the increasing initial uniform bubble diameter. The inlet effect of the first leading edge enhanced the air phase dispersion and local mass transfer coefficients sharply increased from 2.04 to 3.69 times of that in the inlet. The local mass transfer coefficients in each mixing group had unimodal profiles.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq191213024m","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The fluid dynamic and mass transfer characteristics of concentric upward gas-liquid flow were studied in an industrial static mixer with four equally spaced helical inserts (FKSM). The numerical simulations of the gas volume fraction in a Kenics mixer was in good agreement with the numerical and experimental results provided by Rabha et al. The characteristics of radial gas void fraction and local mass transfer coefficients in the FKSM were evaluated under different operating conditions. The velocity profiles of the concentric air phase accelerated by the bubble forces first became sharp and narrow until z/l = = -3.27 and then slowly decreased and stabilized at z/l = -1.5 before entering the first mixing element. Some extra unimodal profile of radial gas holdup gradually generated near the rectangle cross-sections of the mixing elements. The ?G gradually enlarged from r/R = 0.2 to r/R = 0.55 and then weakened from r/R = 0.65 to r/R = 0.874. The air void fractions in the bulk flow region decreased with the increasing initial uniform bubble diameter. The inlet effect of the first leading edge enhanced the air phase dispersion and local mass transfer coefficients sharply increased from 2.04 to 3.69 times of that in the inlet. The local mass transfer coefficients in each mixing group had unimodal profiles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进静态混合器内同心气液流动及传质特性研究
研究了四个等间距螺旋插片(FKSM)工业静态混合器内气液同心向上流动的流体动力学和传质特性。对Kenics混合器内气体体积分数的数值模拟与Rabha等人的数值和实验结果吻合较好。研究了不同工况下FKSM内径向气隙率和局部传质系数的特性。在气泡力加速下,同心气相的速度分布在z/l = = -3.27处首先变得尖细狭窄,然后在z/l = -1.5处缓慢减小并趋于稳定,进入第一个混合单元。在混合单元的矩形截面附近,逐渐产生了一些额外的径向气含率单峰分布。从r/ r = 0.2逐渐增大到r/ r = 0.55,再从r/ r = 0.65逐渐减弱到r/ r = 0.874。随着初始均匀气泡直径的增大,散流区空隙率减小。第一前缘的入口效应增强了气相弥散,局部传质系数由入口的2.04倍急剧增加到3.69倍。各混合组的局部传质系数呈单峰分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Industry & Chemical Engineering Quarterly
Chemical Industry & Chemical Engineering Quarterly CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
2.10
自引率
0.00%
发文量
24
审稿时长
3.3 months
期刊介绍: The Journal invites contributions to the following two main areas: • Applied Chemistry dealing with the application of basic chemical sciences to industry • Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment. The Journal welcomes contributions focused on: Chemical and Biochemical Engineering [...] Process Systems Engineering[...] Environmental Chemical and Process Engineering[...] Materials Synthesis and Processing[...] Food and Bioproducts Processing[...] Process Technology[...]
期刊最新文献
Bioaccumulation and biosorption study of heavy metals removal by Cyanobacteria Nostoc sp. Biogas production and greenhouse gas mitigation using fish waste from Bragança/Brazil Hot-air drying and degradation kinetics of bioactive compounds of gilaburu (Viburnum opulus L.) fruit Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol Internal model control of cumene process using analytical rules and evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1