M. Radonjic, J. Petrovic, M. Milivojevic, M. Stevanović, Jasmina Stojkovska, B. Obradovic
{"title":"Chemical engineering methods in analyses of 3D cancer cell cultures: Hydrodinamic and mass transport considerations","authors":"M. Radonjic, J. Petrovic, M. Milivojevic, M. Stevanović, Jasmina Stojkovska, B. Obradovic","doi":"10.2298/ciceq210607033r","DOIUrl":null,"url":null,"abstract":"A multidisciplinary approach based on experiments and mathematical modeling was used in biomimetic system development for three-dimensional (3D) cultures of cancer cells. Specifically, two cancer cell lines, human embryonic teratocarcinoma NT2/D1 and rat glioma C6, were immobilized in alginate microbeads and microfibers, respectively, and cultured under static and flow conditions in perfusion bioreactors, while chemical engineering methods were applied to explain the obtained results. The superficial medium velocity of 80 mm s-1 induced lower viability of NT2/D1 cells in superficial microbead zones implying adverse effects of fluid shear stresses estimated as ~67 mPa. On the contrary, similar velocity (100 mm s-1) enhanced proliferation of C6 glioma cells within microfibers as compared to static controls. An additional study of silver release from nanocomposite Ag/honey/alginate microfibers under perfusion indicated that medium partially flows through the hydrogel (interstitial velocity of ~10 nm s-1). Thus, a diffusion-advection-reaction model was applied to describe the mass transport to immobilized cells within microfibers. Substances with diffusion coefficients of ?10-9-10-11 m2 s-1 are sufficiently supplied by diffusion only, while those with significantly lower diffusivities (?10-19 m2 s-1) require additional convective transport. The present study demonstrates the selection and contribution of chemical engineering methods in tumor model system development.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq210607033r","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
A multidisciplinary approach based on experiments and mathematical modeling was used in biomimetic system development for three-dimensional (3D) cultures of cancer cells. Specifically, two cancer cell lines, human embryonic teratocarcinoma NT2/D1 and rat glioma C6, were immobilized in alginate microbeads and microfibers, respectively, and cultured under static and flow conditions in perfusion bioreactors, while chemical engineering methods were applied to explain the obtained results. The superficial medium velocity of 80 mm s-1 induced lower viability of NT2/D1 cells in superficial microbead zones implying adverse effects of fluid shear stresses estimated as ~67 mPa. On the contrary, similar velocity (100 mm s-1) enhanced proliferation of C6 glioma cells within microfibers as compared to static controls. An additional study of silver release from nanocomposite Ag/honey/alginate microfibers under perfusion indicated that medium partially flows through the hydrogel (interstitial velocity of ~10 nm s-1). Thus, a diffusion-advection-reaction model was applied to describe the mass transport to immobilized cells within microfibers. Substances with diffusion coefficients of ?10-9-10-11 m2 s-1 are sufficiently supplied by diffusion only, while those with significantly lower diffusivities (?10-19 m2 s-1) require additional convective transport. The present study demonstrates the selection and contribution of chemical engineering methods in tumor model system development.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]