The effect of vacuum process on biodiesel production from Palm Kernel Fatty Acid Distillate

IF 1 4区 工程技术 Q4 CHEMISTRY, APPLIED Chemical Industry & Chemical Engineering Quarterly Pub Date : 2023-01-01 DOI:10.2298/ciceq221026012t
R. Tambun, Dwita Burmana, B. Haryanto, V. Alexander
{"title":"The effect of vacuum process on biodiesel production from Palm Kernel Fatty Acid Distillate","authors":"R. Tambun, Dwita Burmana, B. Haryanto, V. Alexander","doi":"10.2298/ciceq221026012t","DOIUrl":null,"url":null,"abstract":"This study aims to examine the operating pressure effect on the manufacture of biodiesel from Palm Kernel Fatty Acid Distillate (PKFAD) by using para-Toluene Sulfonic Acid (PTSA) catalyst. The operating pressures studied are the vacuum pressures of 70 kPa, 80 kPa, 90 kPa, and 100 kPa, which varied with PTSA concentrations of 5%, 10%, 15%, 20%, 25%, and the molar ratios of methanol and PKFAD are 5:1, 6:1, 7:1, 8:1, 9:1, 10:1. Biodiesel production from PKFAD is carried out with reaction duration of 120 minutes and reaction temperature at 50 0C. The amounts of fatty acids converted to biodiesel are calculated based on the initial acid number and the acid number after the esterification reaction. The results obtained show that a vacuum pressure of 70 kPa to 100 kPa provides a conversion above 96% for all catalyst concentrations and all molar ratios of methanol and PKFAD. The highest conversion of PKFAD to biodiesel of 98.6% is obtained at an operating pressure of 80 kPa, a catalyst concentration of 25%, and the molar ratio of methanol and PKFAD is 10:1. The biodiesel characteristics obtained in this study have met the standards of the American Society for Testing Materials.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq221026012t","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to examine the operating pressure effect on the manufacture of biodiesel from Palm Kernel Fatty Acid Distillate (PKFAD) by using para-Toluene Sulfonic Acid (PTSA) catalyst. The operating pressures studied are the vacuum pressures of 70 kPa, 80 kPa, 90 kPa, and 100 kPa, which varied with PTSA concentrations of 5%, 10%, 15%, 20%, 25%, and the molar ratios of methanol and PKFAD are 5:1, 6:1, 7:1, 8:1, 9:1, 10:1. Biodiesel production from PKFAD is carried out with reaction duration of 120 minutes and reaction temperature at 50 0C. The amounts of fatty acids converted to biodiesel are calculated based on the initial acid number and the acid number after the esterification reaction. The results obtained show that a vacuum pressure of 70 kPa to 100 kPa provides a conversion above 96% for all catalyst concentrations and all molar ratios of methanol and PKFAD. The highest conversion of PKFAD to biodiesel of 98.6% is obtained at an operating pressure of 80 kPa, a catalyst concentration of 25%, and the molar ratio of methanol and PKFAD is 10:1. The biodiesel characteristics obtained in this study have met the standards of the American Society for Testing Materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真空工艺对棕榈仁脂肪酸馏出物生产生物柴油的影响
以对甲苯磺酸(PTSA)为催化剂,研究了操作压力对棕榈仁脂肪酸馏出物(PKFAD)生产生物柴油的影响。操作压力分别为70 kPa、80 kPa、90 kPa、100 kPa,分别随PTSA浓度为5%、10%、15%、20%、25%,甲醇与PKFAD的摩尔比为5:1、6:1、7:1、8:1、9:1、10:1而变化。以PKFAD为原料制备生物柴油,反应时间为120分钟,反应温度为50℃。根据初始酸值和酯化反应后的酸值计算转化为生物柴油的脂肪酸量。结果表明,在70 ~ 100 kPa的真空压力下,甲醇和PKFAD的转化率在96%以上。当操作压力为80 kPa,催化剂浓度为25%,甲醇与PKFAD的摩尔比为10:1时,PKFAD制生物柴油的最高转化率为98.6%。本研究获得的生物柴油特性达到了美国材料测试协会的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Industry & Chemical Engineering Quarterly
Chemical Industry & Chemical Engineering Quarterly CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
2.10
自引率
0.00%
发文量
24
审稿时长
3.3 months
期刊介绍: The Journal invites contributions to the following two main areas: • Applied Chemistry dealing with the application of basic chemical sciences to industry • Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment. The Journal welcomes contributions focused on: Chemical and Biochemical Engineering [...] Process Systems Engineering[...] Environmental Chemical and Process Engineering[...] Materials Synthesis and Processing[...] Food and Bioproducts Processing[...] Process Technology[...]
期刊最新文献
Bioaccumulation and biosorption study of heavy metals removal by Cyanobacteria Nostoc sp. Biogas production and greenhouse gas mitigation using fish waste from Bragança/Brazil Hot-air drying and degradation kinetics of bioactive compounds of gilaburu (Viburnum opulus L.) fruit Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol Internal model control of cumene process using analytical rules and evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1