C. Jumpee, C. Onnomdee, P. Charoenphun, P. Phruksarojanakun, K. Chuamsaamarkkee
{"title":"Radiation safety aspects of 90Y bremsstrahlung radiation produced from radiation shielding apparatus using the Monte Carlo simulation","authors":"C. Jumpee, C. Onnomdee, P. Charoenphun, P. Phruksarojanakun, K. Chuamsaamarkkee","doi":"10.2298/ntrp2103255j","DOIUrl":null,"url":null,"abstract":"Selective internal radiation therapy using an 90Y labelled microsphere is increasingly used to treat hepatocellular carcinoma. Based on its properties, 90Y can produce bremsstrahlung radiation which is essential for post-treatment localisation and dosimetry. However, bremsstrahlung radiation could lead to an increase of radiation exposure of radiation workers. The aim of this work was to determine the 90Y bremsstrahlung radiation produced from the polymethyl methacrylate radiation shielding apparatus using the Monte Carlo simulation. A scintillation detector with a 137Cs standard source was used to validate the Monte Carlo simulation. After validation, the 90Y bremsstrahlung photons spectrum produced from the radiation shielding apparatus was simulated. The radiation equivalent dose rates to the head, neck, body, lower extremities at a distance of 30 centimeters, and finger (contact with the knob) were estimated to be 4.9 ? 0.6, 6.2 ? 0.1, 18.9 ? 0.4, 13.1 ? 0.6, and 3900 ? 50 ?Svh?1, respectively. The corresponding annual doses exceeded the limit when radiation workers performed 2631, 1563, 769, and 515 cases per year with contact the knob 3, 5, 10, and 15 minutes per case, respectively. The simulation result showed that radiation exposure of radiation workers and the number of selective internal radiation therapy procedures performed should be considered.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2103255j","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective internal radiation therapy using an 90Y labelled microsphere is increasingly used to treat hepatocellular carcinoma. Based on its properties, 90Y can produce bremsstrahlung radiation which is essential for post-treatment localisation and dosimetry. However, bremsstrahlung radiation could lead to an increase of radiation exposure of radiation workers. The aim of this work was to determine the 90Y bremsstrahlung radiation produced from the polymethyl methacrylate radiation shielding apparatus using the Monte Carlo simulation. A scintillation detector with a 137Cs standard source was used to validate the Monte Carlo simulation. After validation, the 90Y bremsstrahlung photons spectrum produced from the radiation shielding apparatus was simulated. The radiation equivalent dose rates to the head, neck, body, lower extremities at a distance of 30 centimeters, and finger (contact with the knob) were estimated to be 4.9 ? 0.6, 6.2 ? 0.1, 18.9 ? 0.4, 13.1 ? 0.6, and 3900 ? 50 ?Svh?1, respectively. The corresponding annual doses exceeded the limit when radiation workers performed 2631, 1563, 769, and 515 cases per year with contact the knob 3, 5, 10, and 15 minutes per case, respectively. The simulation result showed that radiation exposure of radiation workers and the number of selective internal radiation therapy procedures performed should be considered.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.