N. Kartalović, Uroš Kovačević, Dušan P. Nikezić, Alija Jusić
{"title":"Influence of electromagnetic pollution of the electron beam generator and high-energy radioactive source on the memory components","authors":"N. Kartalović, Uroš Kovačević, Dušan P. Nikezić, Alija Jusić","doi":"10.2298/ntrp2301010k","DOIUrl":null,"url":null,"abstract":"The study considers the impact of the environmental contamination by the electromagnetic radiation of electron beam generator and high-energy radioactive source on the memory components. Electron beam generator can be used for injecting particle energy into the plasma of the fusion system based on a Marx generator, while radioactive source as a simulator of high-energy ionizing radiation that can be caused by the neutron-induced activation of plasma surrounding structures or released from deuterium-tritium fusion reaction. The effects of gamma radiation of high-energy radioactive source and electric field of the electron beam generator on EPROM and EEPROM semiconductor computer memory, were investigated. An older memory types were deliberately chosen for the reason that their more robust construction will better protect them from the effects of ionizing and non-ionizing radiation. The results obtained under well-controlled conditions show a high degree of non-resistance of the semiconductor technology to the expected electromagnetic pollution of the electron beam generator and high-energy radioactive source. This conclusion raises doubts on the possibility of simultaneous application of electron beam generator, consequently fusion system and nanotechnologies with the increasing need for miniaturization of electronic components.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2301010k","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study considers the impact of the environmental contamination by the electromagnetic radiation of electron beam generator and high-energy radioactive source on the memory components. Electron beam generator can be used for injecting particle energy into the plasma of the fusion system based on a Marx generator, while radioactive source as a simulator of high-energy ionizing radiation that can be caused by the neutron-induced activation of plasma surrounding structures or released from deuterium-tritium fusion reaction. The effects of gamma radiation of high-energy radioactive source and electric field of the electron beam generator on EPROM and EEPROM semiconductor computer memory, were investigated. An older memory types were deliberately chosen for the reason that their more robust construction will better protect them from the effects of ionizing and non-ionizing radiation. The results obtained under well-controlled conditions show a high degree of non-resistance of the semiconductor technology to the expected electromagnetic pollution of the electron beam generator and high-energy radioactive source. This conclusion raises doubts on the possibility of simultaneous application of electron beam generator, consequently fusion system and nanotechnologies with the increasing need for miniaturization of electronic components.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.