{"title":"Calibration and measurement of X-ray personal dose equivalent with a Hp(10) ionization chamber","authors":"Yang Xu, Rui Zhao","doi":"10.2298/ntrp210304019x","DOIUrl":null,"url":null,"abstract":"The value of personal dose equivalent at10 mm depth is to characterize the energy deposition of strong penetrating radiation in human body and is derived by measurement of air kerma and application of conversion coefficients from ISO report. However, the conversion coefficients depend strongly on the photon energy and angles of incidence for low-energy photons. In order to overcome the problem that the conversion coefficient of low energy rays changes greatly due to the small change of energy, a secondary standard ionization chamber was used to measure personal dose equivalent directly. A matched reference field was established with (20-250) kV X-rays and correction factors with Hp(10) chamber were calculated under these radiation qualities with different angles of incidence. The results showed that the differences were almost 22.7 % of correction factors for the low energy photons at angles of incidence 0?. With conversion coefficient recommended in ISO 4037-3-2019, performance of the chamber response with respect to Hp(10) in the energy range from 33 keV to 208 keV was within about ?10%, and in the energy range from 12 keV to 208 keV and for angles of incidence between 0? and 75? was within about ?19%.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp210304019x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The value of personal dose equivalent at10 mm depth is to characterize the energy deposition of strong penetrating radiation in human body and is derived by measurement of air kerma and application of conversion coefficients from ISO report. However, the conversion coefficients depend strongly on the photon energy and angles of incidence for low-energy photons. In order to overcome the problem that the conversion coefficient of low energy rays changes greatly due to the small change of energy, a secondary standard ionization chamber was used to measure personal dose equivalent directly. A matched reference field was established with (20-250) kV X-rays and correction factors with Hp(10) chamber were calculated under these radiation qualities with different angles of incidence. The results showed that the differences were almost 22.7 % of correction factors for the low energy photons at angles of incidence 0?. With conversion coefficient recommended in ISO 4037-3-2019, performance of the chamber response with respect to Hp(10) in the energy range from 33 keV to 208 keV was within about ?10%, and in the energy range from 12 keV to 208 keV and for angles of incidence between 0? and 75? was within about ?19%.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.