Analytical computation technique for calculation the effective geometrical solid angle and the efficiency of cubic scintillation crystal with side cylindrical hole
{"title":"Analytical computation technique for calculation the effective geometrical solid angle and the efficiency of cubic scintillation crystal with side cylindrical hole","authors":"M. Badawi, A. Thabet","doi":"10.2298/ntrp2202091b","DOIUrl":null,"url":null,"abstract":"In the gamma-ray spectroscopy field, the radiometric examination for small quantities of natural samples is extremely significant. Therefore, the gamma-ray spectrometry calibration process must be prepared with good precision for several energies, matrices of sources or samples, and source-to-detector shapes. This manuscript considers a new uncomplicated analytical computation technique to calculate the effective geometrical solid angle and the efficiency of cubic scintillation crystal with a side cylindrical hole. The computations can be done by using a simple method, with a few essential limitations, that describes radioactive point sources located inside the side cylindrical hole and a high-efficiency cubic NaI(Tl) detector, come together with a low background as well. The technique stands on a trouble-free solid angle analytical formula for the detection system, using an accurate relation for the detector cavity, united with rough formulas controlling the interactions in the gamma-ray source and the materials introduced in between the source and the gamma-ray spectrometry. This new technique is not restricted to certain sources, because several source shapes can correspond to a homogeneous huge number of point sources and the detector geometry can be represented as a set of border points. The technique simply can be useful to obtain the full-energy peak efficiency in the future, challenging developments for low-energy gamma-ray spectroscopy.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2202091b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
In the gamma-ray spectroscopy field, the radiometric examination for small quantities of natural samples is extremely significant. Therefore, the gamma-ray spectrometry calibration process must be prepared with good precision for several energies, matrices of sources or samples, and source-to-detector shapes. This manuscript considers a new uncomplicated analytical computation technique to calculate the effective geometrical solid angle and the efficiency of cubic scintillation crystal with a side cylindrical hole. The computations can be done by using a simple method, with a few essential limitations, that describes radioactive point sources located inside the side cylindrical hole and a high-efficiency cubic NaI(Tl) detector, come together with a low background as well. The technique stands on a trouble-free solid angle analytical formula for the detection system, using an accurate relation for the detector cavity, united with rough formulas controlling the interactions in the gamma-ray source and the materials introduced in between the source and the gamma-ray spectrometry. This new technique is not restricted to certain sources, because several source shapes can correspond to a homogeneous huge number of point sources and the detector geometry can be represented as a set of border points. The technique simply can be useful to obtain the full-energy peak efficiency in the future, challenging developments for low-energy gamma-ray spectroscopy.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.