An Alternative to Pooling Kaplan-Meier Curves in Time-to-Event Meta-Analysis

IF 1.2 4区 数学 International Journal of Biostatistics Pub Date : 2011-03-30 DOI:10.2202/1557-4679.1289
D. Rubin
{"title":"An Alternative to Pooling Kaplan-Meier Curves in Time-to-Event Meta-Analysis","authors":"D. Rubin","doi":"10.2202/1557-4679.1289","DOIUrl":null,"url":null,"abstract":"A meta-analysis that uses individual-level data instead of study-level data is widely considered to be a gold standard approach, in part because it allows a time-to-event analysis. Unfortunately, with the common practice of presenting Kaplan-Meier survival curves after pooling subjects across randomized trials, using individual-level data can actually be a step backwards; a Simpson's paradox can occur in which pooling incorrectly reverses the direction of an association. We introduce a nonparametric procedure for synthesizing survival curves across studies that is designed to avoid this difficulty and preserve the integrity of randomization. The technique is based on a counterfactual formulation in which we ask what pooled survival curves would look like if all subjects in all studies had been assigned treatment, or if all subjects had been assigned to control arms. The method is related to a Kaplan-Meier adjustment proposed in 2005 by Xie and Liu to correct for confounding in nonrandomized studies, but is formulated for the meta-analysis setting. The procedure is discussed in the context of examining rosiglitazone and cardiovascular adverse events.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1289","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1289","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A meta-analysis that uses individual-level data instead of study-level data is widely considered to be a gold standard approach, in part because it allows a time-to-event analysis. Unfortunately, with the common practice of presenting Kaplan-Meier survival curves after pooling subjects across randomized trials, using individual-level data can actually be a step backwards; a Simpson's paradox can occur in which pooling incorrectly reverses the direction of an association. We introduce a nonparametric procedure for synthesizing survival curves across studies that is designed to avoid this difficulty and preserve the integrity of randomization. The technique is based on a counterfactual formulation in which we ask what pooled survival curves would look like if all subjects in all studies had been assigned treatment, or if all subjects had been assigned to control arms. The method is related to a Kaplan-Meier adjustment proposed in 2005 by Xie and Liu to correct for confounding in nonrandomized studies, but is formulated for the meta-analysis setting. The procedure is discussed in the context of examining rosiglitazone and cardiovascular adverse events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间-事件元分析中Kaplan-Meier曲线池化的替代方法
使用个人层面数据而不是研究层面数据的元分析被广泛认为是一种黄金标准方法,部分原因是它允许对事件进行时间分析。不幸的是,在随机试验汇集受试者后呈现Kaplan-Meier生存曲线的普遍做法是,使用个人水平的数据实际上是一种倒退;辛普森悖论可能发生在汇集错误地扭转了一个联系的方向。我们引入了一种非参数程序来综合研究中的生存曲线,旨在避免这一困难并保持随机化的完整性。这项技术是基于一个反事实的公式,在这个公式中,我们问如果所有研究中的所有受试者都被分配治疗,或者如果所有受试者都被分配到对照组,那么合并生存曲线会是什么样子。该方法与Xie和Liu在2005年提出的Kaplan-Meier调整有关,该调整旨在纠正非随机研究中的混淆,但该方法是为meta分析设置而制定的。在检查罗格列酮和心血管不良事件的背景下讨论该程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
期刊最新文献
Hypothesis testing for detecting outlier evaluators. Optimizing personalized treatments for targeted patient populations across multiple domains. History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome. Hybrid classical-Bayesian approach to sample size determination for two-arm superiority clinical trials. An interpretable cluster-based logistic regression model, with application to the characterization of response to therapy in severe eosinophilic asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1