Optimal design of controllers for power network connected SOFC using of multi-objective PSO

A. Safari, H. Shahsavari, F. Babaei
{"title":"Optimal design of controllers for power network connected SOFC using of multi-objective PSO","authors":"A. Safari, H. Shahsavari, F. Babaei","doi":"10.2298/SJEE170822001S","DOIUrl":null,"url":null,"abstract":"Abstract: In this paper, we study the concept and forming manner of Solid Oxide Fuel Cell (SOFC) into the electrical system and then, its effect on small signal stability is investigated. The paper illustrates the essential module, mathematical analysis and small signal modeling of the SOFC joined to single machine system. The aim of this study is to reduce power oscillations in the presence of the SOFC with optimal stabilizer. The multi-objective Particle Swarm Optimization (MOPSO) technique has been used for designing a Power System Stabilizer (PSS) in order to improve the performance of the system. Two objective functions are regarded for the design of PSS parameters in order to maximize the damping factor and the damping ratio of the system. To evaluate the efficiency of the proposed optimal stabilizers, four scenarios are considered and then, its results have been analyzed. The proposed PSS tuning technique can be applied to a multi-machine system connected to the SOFC. The efficiency of MOPSO based proposed PSS on the oscillations the system related to SOFC is illustrated by time-domain simulation and also, the comparison of the MOPSO based proposed PSS with the PSS based-single objective method has been prepared.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"15 1","pages":"145-163"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/SJEE170822001S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract: In this paper, we study the concept and forming manner of Solid Oxide Fuel Cell (SOFC) into the electrical system and then, its effect on small signal stability is investigated. The paper illustrates the essential module, mathematical analysis and small signal modeling of the SOFC joined to single machine system. The aim of this study is to reduce power oscillations in the presence of the SOFC with optimal stabilizer. The multi-objective Particle Swarm Optimization (MOPSO) technique has been used for designing a Power System Stabilizer (PSS) in order to improve the performance of the system. Two objective functions are regarded for the design of PSS parameters in order to maximize the damping factor and the damping ratio of the system. To evaluate the efficiency of the proposed optimal stabilizers, four scenarios are considered and then, its results have been analyzed. The proposed PSS tuning technique can be applied to a multi-machine system connected to the SOFC. The efficiency of MOPSO based proposed PSS on the oscillations the system related to SOFC is illustrated by time-domain simulation and also, the comparison of the MOPSO based proposed PSS with the PSS based-single objective method has been prepared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标粒子群算法的并网SOFC控制器优化设计
摘要:本文研究了固体氧化物燃料电池(SOFC)在电力系统中的概念和形成方式,并研究了其对电力系统小信号稳定性的影响。本文阐述了SOFC与单机系统连接的基本模块、数学分析和小信号建模。本研究的目的是利用最优稳定器减少SOFC存在时的功率振荡。将多目标粒子群优化(MOPSO)技术应用于电力系统稳定器的设计,以提高系统的性能。设计PSS参数时考虑两个目标函数,以使系统的阻尼系数和阻尼比最大化。为了评价所提出的最优稳定器的效率,考虑了四种情况,并对其结果进行了分析。所提出的PSS调谐技术可以应用于与SOFC连接的多机系统。通过时域仿真验证了基于MOPSO的PSS对SOFC相关系统振荡的抑制效果,并将基于MOPSO的PSS与基于PSS的单目标方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Serbian Journal of Electrical Engineering
Serbian Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
25 weeks
期刊介绍: The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.
期刊最新文献
Design of allpass-based IIR multi-notch filters with identical pole radiuses Expert system for FDI of dc motor faults using structured residuals design technique Snort ids system visualization interface for alert analysis Lung sound classification using wavelet transform and entropy to detect lung abnormality Denoising electrocardiogram signals using multiband filter and its implementation on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1