Analysis and design of LCS resonant cell based enhanced zero-voltage transition DC-DC boosting converter

A. Nagarajan, Julius S Fusic
{"title":"Analysis and design of LCS resonant cell based enhanced zero-voltage transition DC-DC boosting converter","authors":"A. Nagarajan, Julius S Fusic","doi":"10.2298/SJEE1901105N","DOIUrl":null,"url":null,"abstract":"An enhanced zero-voltage transition boosting converter (EZVTBC) is introduced here which belongs to higher-order family. It exhibits lower source current and load voltage ripples and also it maintains better voltage gain with respect to traditional step-up converter. The zero-voltage transition is attained with an aid of a LCS resonant cell integrating Lr - Cr resonance tank network along with an extra switch. LCS resonant cell is the modified version of conventional ZVT switch cell and the salient feature of this cell is to eliminate peak current stress and conduction losses of main switch as this remains a predominant problem in hard-switched boost converter and it also improves efficiency. Initially, time domain expressions of EZVTBC are derived using Kirchhoff?s laws for different operational stages to predict the resonant transition phenomenon. The simulation is progressed in PSIM software in order to verify its soft-switching performance on a 12 - 24 V, 30 W converter and also dynamic performance of the converter has been studied with line and load variations. It is found that for rated load conditions, efficiency of the soft-switched converter is improved 5 to 10% approximately and resulted in 97%. Moreover the peak current stress and conduction losses were eliminated.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/SJEE1901105N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

An enhanced zero-voltage transition boosting converter (EZVTBC) is introduced here which belongs to higher-order family. It exhibits lower source current and load voltage ripples and also it maintains better voltage gain with respect to traditional step-up converter. The zero-voltage transition is attained with an aid of a LCS resonant cell integrating Lr - Cr resonance tank network along with an extra switch. LCS resonant cell is the modified version of conventional ZVT switch cell and the salient feature of this cell is to eliminate peak current stress and conduction losses of main switch as this remains a predominant problem in hard-switched boost converter and it also improves efficiency. Initially, time domain expressions of EZVTBC are derived using Kirchhoff?s laws for different operational stages to predict the resonant transition phenomenon. The simulation is progressed in PSIM software in order to verify its soft-switching performance on a 12 - 24 V, 30 W converter and also dynamic performance of the converter has been studied with line and load variations. It is found that for rated load conditions, efficiency of the soft-switched converter is improved 5 to 10% approximately and resulted in 97%. Moreover the peak current stress and conduction losses were eliminated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LCS谐振单元的增强型零电压过渡DC-DC升压变换器的分析与设计
本文介绍了一种高阶零电压过渡升压变换器(EZVTBC)。与传统升压变换器相比,它具有较低的源电流和负载电压纹波,并保持较好的电压增益。零电压转换是通过LCS谐振单元集成Lr - Cr谐振槽网络以及一个额外的开关来实现的。LCS谐振单元是传统ZVT开关单元的改进版本,该单元的显著特点是消除了主开关的峰值电流应力和导通损耗,这是硬开关升压变换器的主要问题,也提高了效率。最初,EZVTBC的时域表达式是使用Kirchhoff?S定律用于预测不同运行阶段的共振跃迁现象。在PSIM软件中进行了仿真,验证了其在12 ~ 24 V、30 W变换器上的软开关性能,并研究了变换器随线路和负载变化的动态性能。结果表明,在额定负载条件下,软开关变换器的效率提高了约5 ~ 10%,达到97%。同时消除了峰值电流应力和传导损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Serbian Journal of Electrical Engineering
Serbian Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
25 weeks
期刊介绍: The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.
期刊最新文献
Design of allpass-based IIR multi-notch filters with identical pole radiuses Expert system for FDI of dc motor faults using structured residuals design technique Snort ids system visualization interface for alert analysis Lung sound classification using wavelet transform and entropy to detect lung abnormality Denoising electrocardiogram signals using multiband filter and its implementation on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1