Data augmentation methods for semantic segmentation-based mobile robot perception system

Aleksandar Jokic, Lazar Djokic, Milica Petrović, Z. Miljković
{"title":"Data augmentation methods for semantic segmentation-based mobile robot perception system","authors":"Aleksandar Jokic, Lazar Djokic, Milica Petrović, Z. Miljković","doi":"10.2298/sjee2203291j","DOIUrl":null,"url":null,"abstract":"Data augmentation has become a standard technique for increasing deep learning models? accuracy and robustness. Different pixel intensity modifications, image transformations, and noise additions represent the most utilized data augmentation methods. In this paper, a comprehensive evaluation of data augmentation techniques for mobile robot perception system is performed. The perception system based on a deep learning model for semantic segmentation is augmented by 17 techniques to obtain better generalization characteristics during the training process. The deep learning model is trained and tested on a custom dataset and utilized in real-time scenarios. The experimental results show the increment of 6.2 in mIoU (mean Intersection over Union) for the best combination of data augmentation strategies.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/sjee2203291j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation has become a standard technique for increasing deep learning models? accuracy and robustness. Different pixel intensity modifications, image transformations, and noise additions represent the most utilized data augmentation methods. In this paper, a comprehensive evaluation of data augmentation techniques for mobile robot perception system is performed. The perception system based on a deep learning model for semantic segmentation is augmented by 17 techniques to obtain better generalization characteristics during the training process. The deep learning model is trained and tested on a custom dataset and utilized in real-time scenarios. The experimental results show the increment of 6.2 in mIoU (mean Intersection over Union) for the best combination of data augmentation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义分割的移动机器人感知系统的数据增强方法
数据增强已经成为增加深度学习模型的标准技术。准确性和稳健性。不同的像素强度修改、图像变换和噪声添加是最常用的数据增强方法。本文对移动机器人感知系统的数据增强技术进行了综合评价。基于语义分割深度学习模型的感知系统通过17种技术增强,在训练过程中获得更好的泛化特征。深度学习模型在自定义数据集上进行训练和测试,并在实时场景中使用。实验结果表明,对于数据增强策略的最佳组合,mIoU (average Intersection over Union)增量为6.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Serbian Journal of Electrical Engineering
Serbian Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
25 weeks
期刊介绍: The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.
期刊最新文献
Design of allpass-based IIR multi-notch filters with identical pole radiuses Expert system for FDI of dc motor faults using structured residuals design technique Snort ids system visualization interface for alert analysis Lung sound classification using wavelet transform and entropy to detect lung abnormality Denoising electrocardiogram signals using multiband filter and its implementation on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1