Investigation on the performance of the expansion water seal by using isogeometric analysis with variational inequalities for the frictional contact

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2022-01-01 DOI:10.23967/j.rimni.2022.11.003
Yanlin Zhou, K. Hu, T. Hu, S. Shi, Y. Han, J. Wang, Y. Lou, T. Hou
{"title":"Investigation on the performance of the expansion water seal by using isogeometric analysis with variational inequalities for the frictional contact","authors":"Yanlin Zhou, K. Hu, T. Hu, S. Shi, Y. Han, J. Wang, Y. Lou, T. Hou","doi":"10.23967/j.rimni.2022.11.003","DOIUrl":null,"url":null,"abstract":"In this study, IGA is introduced into the performance analysis of the expansion water seal for an exact representation of its complex geometrical shape. Firstly, the incremental equilibrium equations used in the large deformation analysis are derived for the IGA discretization model based on the updated Lagrangian formulation. The unknown contact forces are directly involved in the equilibrium equations, which results in a simple expression. Then, through the investigation of the contact conditions, the normal and tangential contact forces are verified to be the solutions of two box-constrained variational inequalities representing the normal and tangential contact conditions, respectively. Furthermore, the incremental equilibrium equations for all components of the water seal system and the variational inequalities for all contacts between the components are assembled together and reformulated as a global variational inequality, which is resolved by using the Extra-gradient method. Ultimately, the new method is applied in the performance comparison of two optional expansion water seals, in which the capability and precision of the proposed method are investigated. Results verify that the proposed method is effective in the numerical simulation of the expansion water seal and has a higher precision than the traditional FEM under the same conditions.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.11.003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, IGA is introduced into the performance analysis of the expansion water seal for an exact representation of its complex geometrical shape. Firstly, the incremental equilibrium equations used in the large deformation analysis are derived for the IGA discretization model based on the updated Lagrangian formulation. The unknown contact forces are directly involved in the equilibrium equations, which results in a simple expression. Then, through the investigation of the contact conditions, the normal and tangential contact forces are verified to be the solutions of two box-constrained variational inequalities representing the normal and tangential contact conditions, respectively. Furthermore, the incremental equilibrium equations for all components of the water seal system and the variational inequalities for all contacts between the components are assembled together and reformulated as a global variational inequality, which is resolved by using the Extra-gradient method. Ultimately, the new method is applied in the performance comparison of two optional expansion water seals, in which the capability and precision of the proposed method are investigated. Results verify that the proposed method is effective in the numerical simulation of the expansion water seal and has a higher precision than the traditional FEM under the same conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用摩擦接触变分不等式等几何分析研究膨胀式水封的性能
在本研究中,IGA被引入到膨胀水封的性能分析中,以准确表示其复杂的几何形状。首先,基于改进的拉格朗日公式,导出了IGA离散化模型大变形分析中使用的增量平衡方程;未知的接触力直接涉及到平衡方程中,从而得到一个简单的表达式。然后,通过对接触条件的研究,验证了法向和切向接触力分别为代表法向和切向接触条件的两个盒约束变分不等式的解。此外,将水封系统各组成部分的增量平衡方程和各组成部分之间所有接触的变分不等式组合在一起,并将其重新表述为一个全局变分不等式,并使用Extra-gradient方法进行求解。最后,将该方法应用于两种可选膨胀式水封的性能比较,考察了该方法的性能和精度。结果表明,该方法对膨胀式水封的数值模拟是有效的,在相同条件下具有比传统有限元方法更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1