Design and characteristic analysis of dual-excitation and dual-modulation axial permanent magnetic gear

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2022-01-01 DOI:10.23967/j.rimni.2022.12.001
Y. Ge, F. Liu, D. Wang, D. Liu
{"title":"Design and characteristic analysis of dual-excitation and dual-modulation axial permanent magnetic gear","authors":"Y. Ge, F. Liu, D. Wang, D. Liu","doi":"10.23967/j.rimni.2022.12.001","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of serious axial and tangential leakage and low torque density in the magnetic circuit axial permanent magnet gear (APMG), an external regulating ring is introduced on the basis of APMG to form a dual-excitation and modulation APMG structure, namely DEM-APMG. The low speed rotor of DEM-APMG is clamped between the inner and outer magnetizing rings to generate dual-excitation field (i.e. dual excitation). At the same time, the inner and outer magnetizing rings modulate the low speed rotor dual-directionally modulation (i.e. dual modulation). The axial and tangential leakage flux of APMG can be converted into useful harmonics to increase the output torque and torque density on the basis of APMG. In this study, mathematical analysis is used to describe the air gap magnetic density and electromagnetic torque model of a DEM-APMG, which essentially describes the root cause of the increase in torque density. Using 3D finite element static and dynamic simulations, the transmission characteristics of the APMG and DEM-APMG are compared and analyzed. Results show that the maximum static torque of the DEM-APMG high-speed and low-speed rotors with the same outer diameter increase by 22.7% and 23.8%, respectively, compared with APMG, 26% and 29%, respectively, in steady-state operation, and the torque density increases by 24%. The influence of the primary structural parameters on the transmission characteristics is also investigated using the control variable method. Results show that the duty cycle of the magnet adjusting block, the axial length of the high-speed permanent magnet and the low-speed permanent magnet have the strongest effect on the torque density of the DEM-APMG. When the axial length of the high-speed permanent magnet and low-speed permanent magnet is 8mm, and the duty cycle is 0.4, the torque density can reach the optimal value of 156kNm/m3.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.12.001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problems of serious axial and tangential leakage and low torque density in the magnetic circuit axial permanent magnet gear (APMG), an external regulating ring is introduced on the basis of APMG to form a dual-excitation and modulation APMG structure, namely DEM-APMG. The low speed rotor of DEM-APMG is clamped between the inner and outer magnetizing rings to generate dual-excitation field (i.e. dual excitation). At the same time, the inner and outer magnetizing rings modulate the low speed rotor dual-directionally modulation (i.e. dual modulation). The axial and tangential leakage flux of APMG can be converted into useful harmonics to increase the output torque and torque density on the basis of APMG. In this study, mathematical analysis is used to describe the air gap magnetic density and electromagnetic torque model of a DEM-APMG, which essentially describes the root cause of the increase in torque density. Using 3D finite element static and dynamic simulations, the transmission characteristics of the APMG and DEM-APMG are compared and analyzed. Results show that the maximum static torque of the DEM-APMG high-speed and low-speed rotors with the same outer diameter increase by 22.7% and 23.8%, respectively, compared with APMG, 26% and 29%, respectively, in steady-state operation, and the torque density increases by 24%. The influence of the primary structural parameters on the transmission characteristics is also investigated using the control variable method. Results show that the duty cycle of the magnet adjusting block, the axial length of the high-speed permanent magnet and the low-speed permanent magnet have the strongest effect on the torque density of the DEM-APMG. When the axial length of the high-speed permanent magnet and low-speed permanent magnet is 8mm, and the duty cycle is 0.4, the torque density can reach the optimal value of 156kNm/m3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双激励双调制轴向永磁齿轮的设计与特性分析
为解决磁路轴向永磁齿轮(APMG)轴向和切向泄漏严重、转矩密度低的问题,在APMG的基础上引入外调节环,形成双激励、双调制的APMG结构,即DEM-APMG。DEM-APMG的低速转子夹在内外磁化环之间,产生双励磁场(即双励磁)。同时,内外磁化环调制低速转子双向调制(即双调制)。在APMG的基础上,将轴向泄漏磁通和切向泄漏磁通转换成有用的谐波,增加输出转矩和转矩密度。本文采用数学分析方法描述了DEM-APMG气隙磁密度和电磁转矩模型,从本质上描述了转矩密度增大的根本原因。通过三维有限元静、动态仿真,对比分析了APMG和DEM-APMG的传动特性。结果表明,在相同外径条件下,DEM-APMG高速和低速转子稳态运行时的最大静转矩比APMG分别提高了22.7%和23.8%,转矩密度提高了24%。采用控制变量法研究了主要结构参数对传动特性的影响。结果表明,磁铁调节块的占空比、高速永磁和低速永磁的轴向长度对DEM-APMG的转矩密度影响最大。当高速永磁和低速永磁的轴向长度为8mm,占空比为0.4时,转矩密度可达到156kNm/m3的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1