{"title":"Multi-index cutting parameters optimization for surface quality and cutting energy consumption of boring","authors":"Y. Zhan, J. Zhou, Z. Zou, Y. Xu, X. Li, M. Jia","doi":"10.23967/j.rimni.2022.03.004","DOIUrl":null,"url":null,"abstract":"Saving energy is one of the ways to achieve sustainable development. As an important equipment for manufacturing, machine tool has the characteristics of high energy consumption and high emission. In order to cope with reducing energy consumption and carbon emissions without reducing processing quality, the search for optimal cutting parameters requires balancing the contradiction between machining quality and cutting energy consumption, so that cutting parameters can both reduce energy consumption and ensure the quality of processing. It plays an important role in achieving energy saving and emission reduction. In this paper, the processing quality (residual stress, surface roughness) and cutting energy consumption are selected as the optimized multiple indicators, and the selected optimization indicators are analyzed. Weighted grey correlation analysis is used to obtain the multi-index gray correlation degree value, and the multi-index weight coefficient is determined. Based on weighted grey correlation analysis and multi-index orthogonal optimization method, the cutting parameters of the boring process are optimized, and the optimal parameter combination is that cutting depth of 0.05 mm, cutting speed of 120 m/min, and feed rate of 80 mm/min.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.03.004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Saving energy is one of the ways to achieve sustainable development. As an important equipment for manufacturing, machine tool has the characteristics of high energy consumption and high emission. In order to cope with reducing energy consumption and carbon emissions without reducing processing quality, the search for optimal cutting parameters requires balancing the contradiction between machining quality and cutting energy consumption, so that cutting parameters can both reduce energy consumption and ensure the quality of processing. It plays an important role in achieving energy saving and emission reduction. In this paper, the processing quality (residual stress, surface roughness) and cutting energy consumption are selected as the optimized multiple indicators, and the selected optimization indicators are analyzed. Weighted grey correlation analysis is used to obtain the multi-index gray correlation degree value, and the multi-index weight coefficient is determined. Based on weighted grey correlation analysis and multi-index orthogonal optimization method, the cutting parameters of the boring process are optimized, and the optimal parameter combination is that cutting depth of 0.05 mm, cutting speed of 120 m/min, and feed rate of 80 mm/min.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.