Simulation of damage phenomena in metamaterials

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2023-01-01 DOI:10.23967/j.rimni.2023.04.003
R. Montero-Mayoral, V. González‐Albuixech, M. Sanz-Gómez, V. Yanes
{"title":"Simulation of damage phenomena in metamaterials","authors":"R. Montero-Mayoral, V. González‐Albuixech, M. Sanz-Gómez, V. Yanes","doi":"10.23967/j.rimni.2023.04.003","DOIUrl":null,"url":null,"abstract":"Metamaterials are generated from an interrelated set of cells and can present a macroscopic behaviour that differs from the one that characterizes its basic constituents. Modelling the influence that the damage and fracture of the elemental constituents have in the macroscopic properties of the metamaterial is relevant for its mechanical analysis. Altering the resistant behaviour of the elements (changing their longitudinal elastic modulus), it is possible to approximate the effect of the damage in the complete structure. It is considered as valid the substitution of the damage and plastic deformation phenomena by intermediate states contained in the linear elastic deformation regime. Each state is characterized by the elastic module of the element, whose geometry remains unmodified. In an iterative process, when the induced stress in the elements is greater than the one stablished as the limit, they progress through the different states, diminishing their elastic modulus until they are considered as fractured and are eliminated from the structure. Mass effects are ignored, and a stress-free structure is implemented to calculate each iteration. A simple algorithm is presented to simulate the effect of damage in metamaterial structures, applicable to any finite element software.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.04.003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials are generated from an interrelated set of cells and can present a macroscopic behaviour that differs from the one that characterizes its basic constituents. Modelling the influence that the damage and fracture of the elemental constituents have in the macroscopic properties of the metamaterial is relevant for its mechanical analysis. Altering the resistant behaviour of the elements (changing their longitudinal elastic modulus), it is possible to approximate the effect of the damage in the complete structure. It is considered as valid the substitution of the damage and plastic deformation phenomena by intermediate states contained in the linear elastic deformation regime. Each state is characterized by the elastic module of the element, whose geometry remains unmodified. In an iterative process, when the induced stress in the elements is greater than the one stablished as the limit, they progress through the different states, diminishing their elastic modulus until they are considered as fractured and are eliminated from the structure. Mass effects are ignored, and a stress-free structure is implemented to calculate each iteration. A simple algorithm is presented to simulate the effect of damage in metamaterial structures, applicable to any finite element software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超材料损伤现象的模拟
超材料是由一组相互关联的细胞产生的,可以呈现出不同于其基本成分特征的宏观行为。模拟元素成分的损伤和断裂对超材料宏观性能的影响对其力学分析有重要意义。改变构件的抗力行为(改变其纵向弹性模量),就有可能在整个结构中近似地得到损伤的影响。认为用线弹性变形区所含的中间状态代替损伤和塑性变形现象是有效的。每个状态都由元件的弹性模来表征,其几何形状保持不变。在一个迭代过程中,当单元中的诱导应力大于作为极限的应力时,它们会经历不同的状态,减少它们的弹性模量,直到它们被认为是断裂并从结构中消除。忽略质量效应,采用无应力结构计算每次迭代。提出了一种简单的模拟超材料结构损伤效应的算法,适用于任何有限元软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1