{"title":"An analytical solution to soil consolidation around a pile considering earthquake effect","authors":"Y. Zhang, J. Zhang, X. Xu","doi":"10.23967/j.rimni.2023.05.007","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical solution is developed to investigate soil consolidation around a pile under earthquake loading. The solution is validated using finite element method. The influence of various parameters on excess pore water pressure is analyzed. The results show that excess pore water pressure increases with depth and is positively correlated with n and Neq/N1, while negatively correlated with η, χ, kv, and td. The values of η, χ, kv, Neq/N1, and td affect excess pore water pressure during and after the earthquake, while the value of n only affects excess pore water pressure after the earthquake. The growth rate of excess pore water pressure during the earthquake is positively correlated with n, η, kv, and Neq/N1, and negatively correlated with χ and td. The dissipation rate of excess pore water pressure during the earthquake is positively correlated with η, χ, kv, Neq/N1, and td, and negatively correlated with n. Additionally, a formula for calculating the reconsolidation settlement of pile-soil foundation after an earthquake is proposed, and the effects of pile and soil parameters on pile-soil foundation reconsolidation settlement are analyzed. The results indicate that reconsolidation settlement can be divided into two stages: rapid settlement stage and slow settlement stage. The total settlement of the foundation is positively correlated with n, η, and Neq/N1, while negatively correlated with χ, kv, and td.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.05.007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an analytical solution is developed to investigate soil consolidation around a pile under earthquake loading. The solution is validated using finite element method. The influence of various parameters on excess pore water pressure is analyzed. The results show that excess pore water pressure increases with depth and is positively correlated with n and Neq/N1, while negatively correlated with η, χ, kv, and td. The values of η, χ, kv, Neq/N1, and td affect excess pore water pressure during and after the earthquake, while the value of n only affects excess pore water pressure after the earthquake. The growth rate of excess pore water pressure during the earthquake is positively correlated with n, η, kv, and Neq/N1, and negatively correlated with χ and td. The dissipation rate of excess pore water pressure during the earthquake is positively correlated with η, χ, kv, Neq/N1, and td, and negatively correlated with n. Additionally, a formula for calculating the reconsolidation settlement of pile-soil foundation after an earthquake is proposed, and the effects of pile and soil parameters on pile-soil foundation reconsolidation settlement are analyzed. The results indicate that reconsolidation settlement can be divided into two stages: rapid settlement stage and slow settlement stage. The total settlement of the foundation is positively correlated with n, η, and Neq/N1, while negatively correlated with χ, kv, and td.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.