G. Kamińska, M. Dudziak, J. Bohdziewicz, E. Kudlek
{"title":"Effectivness of Removal of Selected Biologically Active Micropollutants in Nanofiltration","authors":"G. Kamińska, M. Dudziak, J. Bohdziewicz, E. Kudlek","doi":"10.2428/ECEA.2016.23(2)14","DOIUrl":null,"url":null,"abstract":"This study addressed the removal efficiency of five different compounds classified as biologically active compounds ie benzo(a)pyrene (BaP), anthracene (ANT), diclofenac (DCL), pentachlorophenol (PCP), octylphenol (OP) in nanofiltration. They were removed from deionized water solution (500 g/dm) and comparatively from synthetic and municipal effluent. It was found that the efficiency of the nanofiltration depends on significantly both on type of membrane and the environmental matrix and physic-chemical properties of the compounds contained in the treated feed. The highest retention was observed for benzo(a)pyrene removed from deionized water. In this case, the retention of BaP varied from 99.82% to 99.94%. For other compounds (excluding octylphenol) we observed an inverse trend, higher retention degrees were obtained when the synthetic or real effluent were filtered. This study documented a complex mechanism of separation of low molecular weight organic micropollutants in nanofiltration, which could be a result of intermolecular interactions, sieve effect and adsorption. In addition, in the last part we compare our experimental data with predicted retention coefficients, which were computed from models for predicting retention of micropollutants in nanofiltration.","PeriodicalId":44472,"journal":{"name":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2428/ECEA.2016.23(2)14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
This study addressed the removal efficiency of five different compounds classified as biologically active compounds ie benzo(a)pyrene (BaP), anthracene (ANT), diclofenac (DCL), pentachlorophenol (PCP), octylphenol (OP) in nanofiltration. They were removed from deionized water solution (500 g/dm) and comparatively from synthetic and municipal effluent. It was found that the efficiency of the nanofiltration depends on significantly both on type of membrane and the environmental matrix and physic-chemical properties of the compounds contained in the treated feed. The highest retention was observed for benzo(a)pyrene removed from deionized water. In this case, the retention of BaP varied from 99.82% to 99.94%. For other compounds (excluding octylphenol) we observed an inverse trend, higher retention degrees were obtained when the synthetic or real effluent were filtered. This study documented a complex mechanism of separation of low molecular weight organic micropollutants in nanofiltration, which could be a result of intermolecular interactions, sieve effect and adsorption. In addition, in the last part we compare our experimental data with predicted retention coefficients, which were computed from models for predicting retention of micropollutants in nanofiltration.