lncRNA ZNF710-AS1 Acts as a ceRNA for miR-146a-5p and miR-146b-5p to Accelerate Osteogenic Differentiation of PDLSCs by Upregulating the BMP6/Smad1/5/9 Pathway
{"title":"lncRNA ZNF710-AS1 Acts as a ceRNA for miR-146a-5p and miR-146b-5p to Accelerate Osteogenic Differentiation of PDLSCs by Upregulating the BMP6/Smad1/5/9 Pathway","authors":"Ying Liu, D. Fu","doi":"10.2485/jhtb.31.231","DOIUrl":null,"url":null,"abstract":": Multiple experimental pieces of evidence have confirmed that fully understanding the regulatory mechanisms of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) can better promote and improve the ability of perio dontal tissues to regenerate and alleviate periodontal diseases. This study aimed to reveal whether the long noncoding RNA (lncRNA) ZNF710-AS1 plays a role in the osteogenic differentiation of PDLSCs and its molecular mechanisms. Microarray datasets GSE159507 and GSE159508 were retrieved from the Gene Expression Omnibus database and differentially ex pressed genes were identified using R language (limma package). The results revealed that the expression of ZNF710-AS1 and bone morphogenetic protein 6 (BMP6) was upregulated whereas that of miR-146a-5p/miR-146b-5p was downregulated during the osteogenic differentiation of PDLSCs. PDLSCs were successfully isolated and cultured in vitro . Osteogenic and adipogenic differentiation abilities were evaluated by performing alizarin red staining and oil red O staining, respectively. Overexpression of ZNF710-AS1 significantly increased the osteogenic differentiation ability of PDLSCs by upregulating the expression of BMP6 and phosphorylation-SMAD family member 1/5/9 (p-Smad1/5/9) and competitively sponging miR-146a-5p/miR-146b-5p and acting as a competing endogenous RNA (ceRNA). This study demonstrated that ZNF710-AS1 promotes the osteogenic differentiation of PDLSCs by upregulating BMP6/Smad1/5/9 expression and acting as a ceR NA for miR-146a-5p and miR-146b-5p.","PeriodicalId":16040,"journal":{"name":"Journal of Hard Tissue Biology","volume":"92 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hard Tissue Biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2485/jhtb.31.231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
: Multiple experimental pieces of evidence have confirmed that fully understanding the regulatory mechanisms of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) can better promote and improve the ability of perio dontal tissues to regenerate and alleviate periodontal diseases. This study aimed to reveal whether the long noncoding RNA (lncRNA) ZNF710-AS1 plays a role in the osteogenic differentiation of PDLSCs and its molecular mechanisms. Microarray datasets GSE159507 and GSE159508 were retrieved from the Gene Expression Omnibus database and differentially ex pressed genes were identified using R language (limma package). The results revealed that the expression of ZNF710-AS1 and bone morphogenetic protein 6 (BMP6) was upregulated whereas that of miR-146a-5p/miR-146b-5p was downregulated during the osteogenic differentiation of PDLSCs. PDLSCs were successfully isolated and cultured in vitro . Osteogenic and adipogenic differentiation abilities were evaluated by performing alizarin red staining and oil red O staining, respectively. Overexpression of ZNF710-AS1 significantly increased the osteogenic differentiation ability of PDLSCs by upregulating the expression of BMP6 and phosphorylation-SMAD family member 1/5/9 (p-Smad1/5/9) and competitively sponging miR-146a-5p/miR-146b-5p and acting as a competing endogenous RNA (ceRNA). This study demonstrated that ZNF710-AS1 promotes the osteogenic differentiation of PDLSCs by upregulating BMP6/Smad1/5/9 expression and acting as a ceR NA for miR-146a-5p and miR-146b-5p.