A Voting classification approach for Sentiment Extraction from Bengali text

{"title":"A Voting classification approach for Sentiment Extraction from Bengali text","authors":"","doi":"10.30534/ijeter/2023/021152023","DOIUrl":null,"url":null,"abstract":"Sentiment extraction is one of the most challenging tasks in Natural Language Processing (NLP). It is essential for analysing consumer and user feedback on social media sites and in the commercial world. Finding sentiments or emotions in raw text data and identifying their polarity, or whether they are positive or negative, is the main objective of sentiment extraction. This area has been the focus of various research projects for English and other significant natural languages. In this article, we offer a voting classification method that uses a variety of machine learning classifiers to extract sentiment from Bengali language text. We explored Logistic Regression, Decision Tree Classifier, Random Forest Classifier, Support Vector Classifier, Multinomial Nave Base and Ridge Classifier, and lastly, we used a voting classification strategy to extract sentiments from social media comments.","PeriodicalId":13964,"journal":{"name":"International Journal of Emerging Trends in Engineering Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Trends in Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijeter/2023/021152023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment extraction is one of the most challenging tasks in Natural Language Processing (NLP). It is essential for analysing consumer and user feedback on social media sites and in the commercial world. Finding sentiments or emotions in raw text data and identifying their polarity, or whether they are positive or negative, is the main objective of sentiment extraction. This area has been the focus of various research projects for English and other significant natural languages. In this article, we offer a voting classification method that uses a variety of machine learning classifiers to extract sentiment from Bengali language text. We explored Logistic Regression, Decision Tree Classifier, Random Forest Classifier, Support Vector Classifier, Multinomial Nave Base and Ridge Classifier, and lastly, we used a voting classification strategy to extract sentiments from social media comments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种孟加拉文本情感抽取的投票分类方法
情感提取是自然语言处理(NLP)中最具挑战性的任务之一。它对于分析社交媒体网站和商业世界中的消费者和用户反馈至关重要。在原始文本数据中找到情感或情绪,并识别它们的极性,或者它们是积极的还是消极的,是情感提取的主要目标。这个领域一直是英语和其他重要自然语言的各种研究项目的重点。在本文中,我们提供了一种投票分类方法,该方法使用各种机器学习分类器从孟加拉语文本中提取情感。我们探索了逻辑回归、决策树分类器、随机森林分类器、支持向量分类器、多项中基分类器和岭分类器,最后,我们使用投票分类策略从社交媒体评论中提取情感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
70
期刊最新文献
An Effective Data Fusion Methodology for Multi-modal Emotion Recognition: A Survey The Transformative Role of Microsoft Azure AI in Healthcare Low Costs Electrical Calibration System of SLM with the Uncertainty Measurements Compared with Primary System Platform Brūel & Kjær type 3630 Analytical Model of a New Acoustic Conductor Lined with Linear Increasing Perforated Area Enhanced Sleep Quality Through Light Modulation IoT-Based Approach ESP32 with Philips Hue Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1