Climate change simulation and impacts on extreme events of rainfall and storm water in the Zayandeh Rud Catchment

Safieh Javadinejad, R. Dara, F. Jafary
{"title":"Climate change simulation and impacts on extreme events of rainfall and storm water in the Zayandeh Rud Catchment","authors":"Safieh Javadinejad, R. Dara, F. Jafary","doi":"10.25082/REIE.2021.01.001","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the most significant problems is that to recognize how the severity of heavy precipitation and floods may alter in future time in comparison with the current period. The purpose of this research is to understand the impact of future climate change on storm water and probability of maximum flood for future time period. Zayandeh rud river basin in Iran is selected as a case study. Forecast of future climatic parameters based on temperature and precipitation of the upcoming period (2006-2040) is completed with using the HadCM3 model and based on RCP 2.6, 4.5, and 8.5 emission patterns. Also, climate change model is downscaled statistically with applying LARS-WG. In the next step, the probable of maximum precipitation is measured through synoptic method and then, in order to model maximum storm water under the climate change effects, the HEC-HMS for simulating rainfall-runoff model is used. Also, the Snowmelt Runoff Model (SRM) is applied to model snow melting. The results of this research indicate the maximum of probable precipitation in the basin for the period of 2006-2040 under the scenario RCP 2.6, can rise by 5% and by the scenarios of RCP 4.5 and RCP 8.5 can decrease by 5% and 10%, respectively in comparison with the current period 1970-2005.","PeriodicalId":58241,"journal":{"name":"资源环境与信息工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"资源环境与信息工程(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.25082/REIE.2021.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Nowadays, one of the most significant problems is that to recognize how the severity of heavy precipitation and floods may alter in future time in comparison with the current period. The purpose of this research is to understand the impact of future climate change on storm water and probability of maximum flood for future time period. Zayandeh rud river basin in Iran is selected as a case study. Forecast of future climatic parameters based on temperature and precipitation of the upcoming period (2006-2040) is completed with using the HadCM3 model and based on RCP 2.6, 4.5, and 8.5 emission patterns. Also, climate change model is downscaled statistically with applying LARS-WG. In the next step, the probable of maximum precipitation is measured through synoptic method and then, in order to model maximum storm water under the climate change effects, the HEC-HMS for simulating rainfall-runoff model is used. Also, the Snowmelt Runoff Model (SRM) is applied to model snow melting. The results of this research indicate the maximum of probable precipitation in the basin for the period of 2006-2040 under the scenario RCP 2.6, can rise by 5% and by the scenarios of RCP 4.5 and RCP 8.5 can decrease by 5% and 10%, respectively in comparison with the current period 1970-2005.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化模拟及其对Zayandeh流域降水和暴雨极端事件的影响
如今,最重要的问题之一是认识到与当前时期相比,未来强降水和洪水的严重程度可能会发生怎样的变化。本研究的目的是了解未来气候变化对未来一段时间内暴雨水量和最大洪水发生概率的影响。选取伊朗Zayandeh河流域作为案例研究。利用HadCM3模式和RCP 2.6、4.5和8.5排放型完成了基于未来时期(2006-2040)温度和降水的未来气候参数预报。同时,应用LARS-WG对气候变化模型进行了统计缩尺。接下来,通过天气学方法测量最大降水的可能性,然后使用HEC-HMS模拟降雨-径流模式来模拟气候变化影响下的最大暴雨。同时,应用融雪径流模型(SRM)模拟融雪过程。结果表明,与1970 ~ 2005年相比,RCP 2.6情景下2006 ~ 2040年流域最大可能降水量可增加5%,RCP 4.5情景和RCP 8.5情景分别可减少5%和10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ecological resources of boreal forests in the adsorption of greenhouse gases and in adaptation to global warming Runoff coefficient estimation for various catchment surfaces Pacific ocean mega ecotone of Northern Eruasia as the belt of the origin of the modern continental biosphere Bolreal ecotone of the East-European Plain: Empirical statistical modeling Causes and consequences of floods: flash floods, urban floods, river floods and coastal floods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1