{"title":"BrdU Positive Cells Induced in a Genetic Mouse Model of Glaucoma.","authors":"J. Paris, N. C. Sklar, C. Linn","doi":"10.26420/jophthalmolvissci.2021.1046","DOIUrl":null,"url":null,"abstract":"Previous studies have shown that eye drop application of the selective α7 nicotinic acetylcholine receptor agonist, PNU-282987, induces neurogenesis of RGCs in adult wild-type rodents. This study was designed to test the hypothesis that PNU-282987 reverses the loss of RGCs associated with glaucoma. A DBA/2J mouse model that auto-induces a glaucoma-like condition in adulthood was used for these studies. Short-term effects using PNU-282987 and BrdU eye drop treatments were examined, as well as the effects of early treatment and the effects in a chronic early treatment group in DBA/2J mice aged 3, 6 and 10 months. With and without treatment, retinas were removed, fixed, immunostained and RGC counts were assessed. IOP measurements were obtained weekly using a Tonolab tonometer. Results showed an average typical loss of BrdU positive RGCs by 29% by 10 months of age in this DBA/2J colony corresponding with a significant increase in IOP. However, the two-week short term application of PNU-282987 and BrdU induced a significant 21% increase in RGCs for DBA/2J mice at all ages. Chronic early PNU-282987 treatment produced a similarly significant increase in RGCs, while acute early treatment had no effect on RGC numbers. IOP measurements were not affected with PNU-282987 treatment. These studies demonstrated that 2-week treatment with PNU-282987, as well as chronic long-term treatment, induced a significant increase in the number of RGCs in the DBA/2J retina, counteracting the effects of the DBA/2J genetic glaucoma-like condition. These results suggest a potential future treatment of degenerative retinal diseases with PNU-282987.","PeriodicalId":87309,"journal":{"name":"Journal of ophthalmology & visual sciences","volume":"6 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ophthalmology & visual sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/jophthalmolvissci.2021.1046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Previous studies have shown that eye drop application of the selective α7 nicotinic acetylcholine receptor agonist, PNU-282987, induces neurogenesis of RGCs in adult wild-type rodents. This study was designed to test the hypothesis that PNU-282987 reverses the loss of RGCs associated with glaucoma. A DBA/2J mouse model that auto-induces a glaucoma-like condition in adulthood was used for these studies. Short-term effects using PNU-282987 and BrdU eye drop treatments were examined, as well as the effects of early treatment and the effects in a chronic early treatment group in DBA/2J mice aged 3, 6 and 10 months. With and without treatment, retinas were removed, fixed, immunostained and RGC counts were assessed. IOP measurements were obtained weekly using a Tonolab tonometer. Results showed an average typical loss of BrdU positive RGCs by 29% by 10 months of age in this DBA/2J colony corresponding with a significant increase in IOP. However, the two-week short term application of PNU-282987 and BrdU induced a significant 21% increase in RGCs for DBA/2J mice at all ages. Chronic early PNU-282987 treatment produced a similarly significant increase in RGCs, while acute early treatment had no effect on RGC numbers. IOP measurements were not affected with PNU-282987 treatment. These studies demonstrated that 2-week treatment with PNU-282987, as well as chronic long-term treatment, induced a significant increase in the number of RGCs in the DBA/2J retina, counteracting the effects of the DBA/2J genetic glaucoma-like condition. These results suggest a potential future treatment of degenerative retinal diseases with PNU-282987.