David Julian Arias-Chávez, Patrick Mailloux-Salinas, Jessica Ledesma Aparicio, Guadalupe Bravo, Norma Leticia Gómez-Viquez
{"title":"Combined fructose and sucrose consumption from an early age aggravates cardiac oxidative damage and causes a dilated cardiomyopathy in SHR rats.","authors":"David Julian Arias-Chávez, Patrick Mailloux-Salinas, Jessica Ledesma Aparicio, Guadalupe Bravo, Norma Leticia Gómez-Viquez","doi":"10.3164/jcbn.23-2","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity increases the risk of arterial hypertension in young adults and favors an early-onset cardiomyopathy by generating oxidative stress. In this sense, indiscriminate consumption of sucrose and fructose sweetened beverages from early ages causes obesity, however its consequences on the heart when there is a genetic predisposition to develop hypertension are not clear. We compared the effects of sucrose, fructose, and their combination in weanling male spontaneously hypertensive rats to determine the relationship between genetic hypertension, obesity, and consumption of these sugars on the degree of cardiac hypertrophy, oxidative stress and Ca<sup>2+</sup>/calmodulin dependent protein kinase II delta oxidation. Histological, biochemical, and Western blot studies were performed 12 weeks after treatment initiation. We found that chronic consumption of sucrose or fructose leads to obesity, exacerbates genetic arterial hypertension-induced metabolic alterations, and increases cardiac oxidative stress, Ca<sup>2+</sup>/calmodulin dependent protein kinase II delta oxidation and cardiac hypertrophy. Nonetheless, when sucrose and fructose are consumed together, metabolic alterations worsen and are accompanied by dilated cardiomyopathy. These data suggest that sucrose and fructose combined consumption starting from maternal weaning in rats with genetic predisposition to arterial hypertension accelerates the progression of cardiomyopathy resulting in an early dilated cardiomyopathy.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"1 1","pages":"205-213"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.23-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity increases the risk of arterial hypertension in young adults and favors an early-onset cardiomyopathy by generating oxidative stress. In this sense, indiscriminate consumption of sucrose and fructose sweetened beverages from early ages causes obesity, however its consequences on the heart when there is a genetic predisposition to develop hypertension are not clear. We compared the effects of sucrose, fructose, and their combination in weanling male spontaneously hypertensive rats to determine the relationship between genetic hypertension, obesity, and consumption of these sugars on the degree of cardiac hypertrophy, oxidative stress and Ca2+/calmodulin dependent protein kinase II delta oxidation. Histological, biochemical, and Western blot studies were performed 12 weeks after treatment initiation. We found that chronic consumption of sucrose or fructose leads to obesity, exacerbates genetic arterial hypertension-induced metabolic alterations, and increases cardiac oxidative stress, Ca2+/calmodulin dependent protein kinase II delta oxidation and cardiac hypertrophy. Nonetheless, when sucrose and fructose are consumed together, metabolic alterations worsen and are accompanied by dilated cardiomyopathy. These data suggest that sucrose and fructose combined consumption starting from maternal weaning in rats with genetic predisposition to arterial hypertension accelerates the progression of cardiomyopathy resulting in an early dilated cardiomyopathy.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.