DIMERIZATION AND HYDRATION OF GLYOXYLIC ACID: A COMPUTATIONAL STUDY

IF 0.5 Q4 EDUCATION & EDUCATIONAL RESEARCH Rasayan Journal of Chemistry Pub Date : 2023-01-01 DOI:10.31788/rjc.2023.1638378
Ruchi Kohli, Anu Mittal, A. Mittal
{"title":"DIMERIZATION AND HYDRATION OF GLYOXYLIC ACID: A COMPUTATIONAL STUDY","authors":"Ruchi Kohli, Anu Mittal, A. Mittal","doi":"10.31788/rjc.2023.1638378","DOIUrl":null,"url":null,"abstract":"The hydrogen-bonded dimers and 1:1 complexes formed between glyoxylic acid (GA) and H2O have been investigated employing computational techniques like Natural Bond Orbital (NBO) analysis and Atoms in Molecules (AIM) etc. All calculations are carried at B3LYP/6-311++G** level. Seven dimers and four monohydrates are located on the potential energy surface (PES) each for intramolecular hydrogen bonding (IHB) stabilized G3 and non-IHB stabilized rotamer G1. The most stable dimer and hydrate are formed by non-IHB stabilized rotamer G1. In the most stable dimer, two GA units interact in a duo of C=O…H-O hydrogen bonds forming an eight-membered ring structure. In most stable hydrate, H2O acts as a hydrogen bond acceptor and GA acts as an HB donor. The stabilization energies are calculated and the effect of basis set superposition errors (BSSE) is also considered. A good correlation is found between S.E. and the sum of AIM electron densities at bond critical points for both dimers and hydrates. The gas phase hydration and clustering of GA drive new particle formation for atmospheric aerosols, which affect climate, weather, and human health, hence the study has a significant environmental concern.","PeriodicalId":21063,"journal":{"name":"Rasayan Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rasayan Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31788/rjc.2023.1638378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen-bonded dimers and 1:1 complexes formed between glyoxylic acid (GA) and H2O have been investigated employing computational techniques like Natural Bond Orbital (NBO) analysis and Atoms in Molecules (AIM) etc. All calculations are carried at B3LYP/6-311++G** level. Seven dimers and four monohydrates are located on the potential energy surface (PES) each for intramolecular hydrogen bonding (IHB) stabilized G3 and non-IHB stabilized rotamer G1. The most stable dimer and hydrate are formed by non-IHB stabilized rotamer G1. In the most stable dimer, two GA units interact in a duo of C=O…H-O hydrogen bonds forming an eight-membered ring structure. In most stable hydrate, H2O acts as a hydrogen bond acceptor and GA acts as an HB donor. The stabilization energies are calculated and the effect of basis set superposition errors (BSSE) is also considered. A good correlation is found between S.E. and the sum of AIM electron densities at bond critical points for both dimers and hydrates. The gas phase hydration and clustering of GA drive new particle formation for atmospheric aerosols, which affect climate, weather, and human health, hence the study has a significant environmental concern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙醛酸的二聚化和水化:一个计算研究
采用自然键轨道(NBO)和分子中原子(AIM)等计算方法研究了乙醛酸(GA)与水之间形成的氢键二聚体和1:1配合物。所有计算均在B3LYP/6-311++G**水平下进行。7个二聚体和4个一水合物分别位于分子内氢键(IHB)稳定的G3和非IHB稳定的旋转体G1的势能表面(PES)。最稳定的二聚体和水合物是由非ihb稳定的旋转体G1形成的。在最稳定的二聚体中,两个GA单元在两个C=O…H-O氢键中相互作用,形成一个八元环结构。在大多数稳定的水合物中,H2O作为氢键受体,GA作为HB供体。计算了稳定能,并考虑了基集叠加误差(BSSE)的影响。在二聚体和水合物的键临界点处,S.E.与AIM电子密度和之间有很好的相关性。GA的气相水化和聚类驱动大气气溶胶新粒子的形成,影响气候、天气和人类健康,因此该研究具有重要的环境意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rasayan Journal of Chemistry
Rasayan Journal of Chemistry Energy-Energy (all)
CiteScore
1.90
自引率
0.00%
发文量
196
期刊介绍: RASĀYAN Journal of Chemistry [RJC] signifies a confluence of diverse streams of chemistry to stir up the cerebral powers of its contributors and readers. By introducing the journal by this name, we humbly intent to provide an open platform to all researchers, academicians and readers to showcase their ideas and research findings among the people of their own fraternity and to share their vast repository of knowledge and information. The journal seeks to embody the spirit of enquiry and innovation to augment the richness of existing chemistry literature and theories. We also aim towards making this journal an unparalleled reservoir of information and in process aspire to inculcate and expand the research aptitude.
期刊最新文献
THERMAL INSULATING MATERIALS BASED ON MAGNESIUM-CONTAINING TECHNOGENIC RAW MATERIALS GREEN SYNTHESIS AND CHARACTERIZATION OF CODOPED ZnO NANOPARTICLES VIA THE ACCUMULATION OF COBALT ION ONTO PISTIA (Pistia stratiotes L.,) PLANT TISSUE AND ITS PHOTOCATALYTIC ACTIVITY TOWARD ORGANOSULFUR POLLUTANTS SIMULTANEOUS REVERSE PHASE-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (RP-HPLC) ESTIMATION OF AZELASTINE HYDROCHLORIDE, FLUTICASONE PROPIONATE, AND PHENYL ETHYL ALCOHOL IN DYMISTA (MEDA) NASAL SPRAY APPLICATION OF HETEROGENEOUS CATALYST OF Meti SHELLS (Batissa violecea L. von Lamark 1818) IN THE PRODUCTION OF BIODIESEL BASED ON MORINGA SEED OIL A REVIEW OF THE DEVELOPMENT OF THE GEL CASTING METHOD FOR POROUS CERAMIC FABRICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1