Particle Swarm optimization-based Neural Network method for predicting satisfaction of recipients of internet data quota assistance from the ministry of education and culture

Annahl Riadi, Irvan Muzakkir, M. H. Botutihe
{"title":"Particle Swarm optimization-based Neural Network method for predicting satisfaction of recipients of internet data quota assistance from the ministry of education and culture","authors":"Annahl Riadi, Irvan Muzakkir, M. H. Botutihe","doi":"10.33096/ilkom.v14i1.1094.52-56","DOIUrl":null,"url":null,"abstract":"The free quota assistance program for students and lecturers is an assistance program provided by The Ministry of Education and Culture. This program has been implemented since the spread of the covid-19 pandemic in all regions of Indonesia. This assistance is expected to help students and lecturers carry out online learning caused by the pandemic covid-19. This study aims to predict the satisfaction level of the users so that it can help the government in advancing education. The data processing is carried out using the rapid miner application and the neural network method with particle swarm optimization. From the results of data processing, the accuracy value for the neural network algorithm model is 42.44%, and the accuracy value for the PSO-based neural network algorithm model is 91.86%.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v14i1.1094.52-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The free quota assistance program for students and lecturers is an assistance program provided by The Ministry of Education and Culture. This program has been implemented since the spread of the covid-19 pandemic in all regions of Indonesia. This assistance is expected to help students and lecturers carry out online learning caused by the pandemic covid-19. This study aims to predict the satisfaction level of the users so that it can help the government in advancing education. The data processing is carried out using the rapid miner application and the neural network method with particle swarm optimization. From the results of data processing, the accuracy value for the neural network algorithm model is 42.44%, and the accuracy value for the PSO-based neural network algorithm model is 91.86%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的神经网络方法预测教育部网络数据配额援助接受者满意度
对学生和讲师的免费配额支援是教育文化部提供的支援项目。自2019冠状病毒病大流行在印度尼西亚所有地区蔓延以来,该方案一直在实施。预计这一援助将帮助学生和讲师在covid-19大流行期间进行在线学习。本研究旨在预测使用者的满意度,以协助政府推进教育。数据处理采用快速挖掘应用和粒子群优化的神经网络方法。从数据处理结果来看,神经网络算法模型的精度值为42.44%,基于pso的神经网络算法模型的精度值为91.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
K-Nearest Neighbors Analysis for Public Sentiment towards Implementation of Booster Vaccines in Indonesia Feature Space Augmentation for Negation Handling on Sentiment Analysis Diabetes Mellitus Early Detection Simulation using The K-Nearest Neighbors Algorithm with Cloud-Based Runtime (COLAB) Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Decision Tree C4.5 Performance Improvement using Synthetic Minority Oversampling Technique (SMOTE) and K-Nearest Neighbor for Debtor Eligibility Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1