{"title":"The circulation and residence time of the strait of Georgia using a simple mixing‐box approach","authors":"R. Pawlowicz, O. Riche, M. Halverson","doi":"10.3137/ao.450401","DOIUrl":null,"url":null,"abstract":"Abstract New observations in the Strait of Georgia, British Columbia, Canada show that temperature and dissolved oxygen have a pronounced seasonal cycle, with a spatially varying phase. Phase lags in oscillating systems arise due to internal time scales which can be interpreted in fluid systems as residence times. Exploiting phase we construct a quantitative and internally consistent circulation scheme for this body of water after dividing it into four regions: the Fraser River plume, the surface waters down to 50 m, the intermediate waters down to 200 m, and the deep water. In this scheme the intermediate water, the largest region by volume, is continually renewed, and its characteristics change in response to continuous changes in the characteristics of source waters. The dependence of the estuarine circulation on variations in fresh inflow is weak. The deep water is volumetrically less important, but seasonal changes in the density of oceanic source waters can produce a variation in the overall circulation by driving an additional inflow which leads to both deep renewal and increased upwelling. In turn, this increased upwelling results in lower surface temperatures than might otherwise be expected. Intermediate water residence times are about 160 days. Deep water is renewed once per year in summer and is affected only by vertical diffusion during the rest of the year. Surface water residence times for the entire Strait are a few months at most, but the Fraser River plume has a freshwater residence time of approximately 1 day. In addition, we find that the residence time of oceanic source waters in the Strait is 1.7 years due to a substantial recirculation in Haro Strait. Other consequences of this scheme are consistent with independent estimates of horizontal transports, air‐sea heat fluxes, subsurface oxygen (O2) utilization, and primary production. Finally, analysis of the spatial phase variations suggests that the intermediate inflow enters the Strait as a boundary current along the slopes of the Fraser delta.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3137/ao.450401","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3137/ao.450401","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 108
Abstract
Abstract New observations in the Strait of Georgia, British Columbia, Canada show that temperature and dissolved oxygen have a pronounced seasonal cycle, with a spatially varying phase. Phase lags in oscillating systems arise due to internal time scales which can be interpreted in fluid systems as residence times. Exploiting phase we construct a quantitative and internally consistent circulation scheme for this body of water after dividing it into four regions: the Fraser River plume, the surface waters down to 50 m, the intermediate waters down to 200 m, and the deep water. In this scheme the intermediate water, the largest region by volume, is continually renewed, and its characteristics change in response to continuous changes in the characteristics of source waters. The dependence of the estuarine circulation on variations in fresh inflow is weak. The deep water is volumetrically less important, but seasonal changes in the density of oceanic source waters can produce a variation in the overall circulation by driving an additional inflow which leads to both deep renewal and increased upwelling. In turn, this increased upwelling results in lower surface temperatures than might otherwise be expected. Intermediate water residence times are about 160 days. Deep water is renewed once per year in summer and is affected only by vertical diffusion during the rest of the year. Surface water residence times for the entire Strait are a few months at most, but the Fraser River plume has a freshwater residence time of approximately 1 day. In addition, we find that the residence time of oceanic source waters in the Strait is 1.7 years due to a substantial recirculation in Haro Strait. Other consequences of this scheme are consistent with independent estimates of horizontal transports, air‐sea heat fluxes, subsurface oxygen (O2) utilization, and primary production. Finally, analysis of the spatial phase variations suggests that the intermediate inflow enters the Strait as a boundary current along the slopes of the Fraser delta.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.