{"title":"On the existence of maximum likelihood estimates for the parameters of the Conway-Maxwell-Poisson distribution","authors":"S. Bedbur, U. Kamps, A. Imm","doi":"10.30757/alea.v20-20","DOIUrl":null,"url":null,"abstract":". As a well-known and important extension of the common Poisson model with an additional parameter, Conway-Maxwell-Poisson (CMP) distributions allow for describing under-and overdispersion in discrete data. Constituting a two-parameter exponential family, CMP distributions possess useful structural and statistical properties. However, the exponential family is not steep and maximum likelihood estimation may fail even for non-trivial data sets, which is different from the Poisson case, where maximum likelihood estimation only fails if all data outcomes are zero. Conditions are examined for existence and non-existence of maximum likelihood estimates in the full family as well as in subfamilies of CMP distributions, and several figures illustrate the problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. As a well-known and important extension of the common Poisson model with an additional parameter, Conway-Maxwell-Poisson (CMP) distributions allow for describing under-and overdispersion in discrete data. Constituting a two-parameter exponential family, CMP distributions possess useful structural and statistical properties. However, the exponential family is not steep and maximum likelihood estimation may fail even for non-trivial data sets, which is different from the Poisson case, where maximum likelihood estimation only fails if all data outcomes are zero. Conditions are examined for existence and non-existence of maximum likelihood estimates in the full family as well as in subfamilies of CMP distributions, and several figures illustrate the problem.