{"title":"Use of Bacillus subtilis D9 to purify coastal aquaculture wastewater and improve grass carp resistance to Vibrio infection","authors":"Y. Shao, H. Zhong, L. Wang, Mma Elbashier","doi":"10.3354/aei00404","DOIUrl":null,"url":null,"abstract":"In coastal areas of China, high-density aquaculture has caused environmental problems and fish health concerns. Bacillus subtilis D9 is a new strain isolated from coastal soils which could be used in aquaculture to improve the water environment. We investigated the effect of B. subtilis D9 on the purification of coastal aquaculture wastewater and the resistance of grass carp Ctenopharyngodon idellus to pathogenic Vibrio infection. Three inoculation levels of B. subtilis D9 were used (5.5 × 107, 5.5 × 108 and 5.5×109 cfu ml-1 as BD7, BD8 and BD9, respectively), together with sterilized saline water without B. subtilis D9 as the Control. B. subtilis D9 at the inoculation level of BD8 showed the best performance with 81, 87, 91, 52 and 86% removal of NH4+-N, NO3--N, total nitrogen (TN), NO2--N and turbidity, respectively, after 25 d of treatment. These values were significantly higher than at the BD7, BD9 and Control levels. Under aeration (AIR) conditions, B. subtilis D9 at the inoculation level of BD8 showed removal efficiency of 93, 91, 95, 76 and 89%, respectively. In contrast it was only 26, 29, 16, 10 and 57% in an inactivated bacteria liquid (IBL) treatment. After 22 d of infection by Vibrio parahaemolyticus, significant differences were found in weight gain, specific growth rate and relative percentage of survival among grass carp grown on AIR, BD8 or IBL wastewater. In summary, B. subtilis D9 with aeration has beneficial effects on the purification of coastal aquaculture wastewater and on the resistance of grass carp to disease caused by V. parahaemolyticus.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00404","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
In coastal areas of China, high-density aquaculture has caused environmental problems and fish health concerns. Bacillus subtilis D9 is a new strain isolated from coastal soils which could be used in aquaculture to improve the water environment. We investigated the effect of B. subtilis D9 on the purification of coastal aquaculture wastewater and the resistance of grass carp Ctenopharyngodon idellus to pathogenic Vibrio infection. Three inoculation levels of B. subtilis D9 were used (5.5 × 107, 5.5 × 108 and 5.5×109 cfu ml-1 as BD7, BD8 and BD9, respectively), together with sterilized saline water without B. subtilis D9 as the Control. B. subtilis D9 at the inoculation level of BD8 showed the best performance with 81, 87, 91, 52 and 86% removal of NH4+-N, NO3--N, total nitrogen (TN), NO2--N and turbidity, respectively, after 25 d of treatment. These values were significantly higher than at the BD7, BD9 and Control levels. Under aeration (AIR) conditions, B. subtilis D9 at the inoculation level of BD8 showed removal efficiency of 93, 91, 95, 76 and 89%, respectively. In contrast it was only 26, 29, 16, 10 and 57% in an inactivated bacteria liquid (IBL) treatment. After 22 d of infection by Vibrio parahaemolyticus, significant differences were found in weight gain, specific growth rate and relative percentage of survival among grass carp grown on AIR, BD8 or IBL wastewater. In summary, B. subtilis D9 with aeration has beneficial effects on the purification of coastal aquaculture wastewater and on the resistance of grass carp to disease caused by V. parahaemolyticus.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.