Exploring video and eDNA metabarcoding methods to assess oyster aquaculture cages as fish habitat

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2021-01-01 DOI:10.3354/AEI00408
R. Mercaldo-Allen, P. Clark, Yuan Liu, G. Phillips, Dylan H. Redman, P. Auster, Erick Estela, L. Milke, Alison Verkade, J. Rose
{"title":"Exploring video and eDNA metabarcoding methods to assess oyster aquaculture cages as fish habitat","authors":"R. Mercaldo-Allen, P. Clark, Yuan Liu, G. Phillips, Dylan H. Redman, P. Auster, Erick Estela, L. Milke, Alison Verkade, J. Rose","doi":"10.3354/AEI00408","DOIUrl":null,"url":null,"abstract":"Multi-tiered oyster aquaculture cages may provide habitat for fish assemblages similar to natural structured seafloor. Methods were developed to assess fish assemblages associated with aquaculture gear and boulder habitat using underwater video census combined with environmental DNA (eDNA) metabarcoding. Action cameras were mounted on 3 aquaculture cages at a commercial eastern oyster Crassostrea virginica farm (‘cage’) and among 3 boulders on a natural rock reef (‘boulder’) from June to August 2017 in Long Island Sound, USA. Interval and continuous video recording strategies were tested. During interval recording, cameras collected 8 min video segments hourly from 07:00 to 19:00 h on cages only. Continuous video was also collected for 2-3 h on oyster cages and boulders. Data loggers recorded light intensity and current speed. Seawater was collected for eDNA metabarcoding on the reef and farm. MaxN measurements of fish abundance were calculated in video, and 7 fish species were observed. Black sea bass Centropristis striata, cunner Tautogolabrus adspersus, scup Stenotomus chrysops, and tautog Tautoga onitis were the most abundant species observed in both oyster cage and boulder videos. In continuous video, black sea bass, scup, and tautog were observed more frequently and at higher abundance on the cage farm, while cunner were observed more frequently and at higher abundance on boulders within the rock reef. eDNA metabarcoding detected 42 fish species at the farm and reef. Six species were detected using both methods. Applied in tandem, video recording and eDNA provided a comprehensive approach for describing fish assemblages in difficult to sample structured oyster aquaculture and boulder habitats.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00408","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 5

Abstract

Multi-tiered oyster aquaculture cages may provide habitat for fish assemblages similar to natural structured seafloor. Methods were developed to assess fish assemblages associated with aquaculture gear and boulder habitat using underwater video census combined with environmental DNA (eDNA) metabarcoding. Action cameras were mounted on 3 aquaculture cages at a commercial eastern oyster Crassostrea virginica farm (‘cage’) and among 3 boulders on a natural rock reef (‘boulder’) from June to August 2017 in Long Island Sound, USA. Interval and continuous video recording strategies were tested. During interval recording, cameras collected 8 min video segments hourly from 07:00 to 19:00 h on cages only. Continuous video was also collected for 2-3 h on oyster cages and boulders. Data loggers recorded light intensity and current speed. Seawater was collected for eDNA metabarcoding on the reef and farm. MaxN measurements of fish abundance were calculated in video, and 7 fish species were observed. Black sea bass Centropristis striata, cunner Tautogolabrus adspersus, scup Stenotomus chrysops, and tautog Tautoga onitis were the most abundant species observed in both oyster cage and boulder videos. In continuous video, black sea bass, scup, and tautog were observed more frequently and at higher abundance on the cage farm, while cunner were observed more frequently and at higher abundance on boulders within the rock reef. eDNA metabarcoding detected 42 fish species at the farm and reef. Six species were detected using both methods. Applied in tandem, video recording and eDNA provided a comprehensive approach for describing fish assemblages in difficult to sample structured oyster aquaculture and boulder habitats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索视频和eDNA元条形码方法评价牡蛎养殖网箱作为鱼类栖息地
多层牡蛎养殖网箱可为鱼类群落提供类似于天然结构海底的栖息地。采用水下视频普查与环境DNA元条形码相结合的方法,研究了与水产养殖渔具和圆石生境相关的鱼类群落。2017年6月至8月,在美国长岛湾的一个商业东方牡蛎养殖场(“笼”)的3个养殖笼和一个天然礁石(“巨石”)的3个巨石上安装了运动摄像机。测试了间隔录像和连续录像策略。在间歇记录期间,摄像机每小时从07:00至19:00仅在笼子上收集8分钟的视频片段。对牡蛎笼和抱石进行2 ~ 3 h的连续录像。数据记录器记录了光强和电流速度。收集海水对珊瑚礁和养殖场进行eDNA元条形码编码。在视频中计算了鱼类丰度的MaxN测量值,共观察到7种鱼类。在牡蛎笼和圆石录像带中发现的种类最多的是黑鲈centrropristis striata、cunner Tautogolabrus adspersus、scup Stenotomus chrysops和Tautoga onitis。在连续录像中,黑鲈、海鲈和金枪鱼在网箱养殖场中被观察到的频率更高,丰度也更高,而在礁石内的巨石上被观察到的频率更高,丰度也更高。eDNA元条形码在养殖场和珊瑚礁检测到42种鱼类。两种方法共检出6种。视频记录和eDNA的串联应用为描述难以取样的结构化牡蛎养殖和巨石栖息地的鱼类组合提供了全面的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Fish dispersal from a sabotage-mediated massive escape event Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds Quantification of finfish assemblages associated with mussel and seaweed farms in southwest UK provides evidence of potential benefits to fisheries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1