The concept of the quiescent centre and how it found support from work with X-rays. II. The molecular aftermath

IF 1 Q3 PLANT SCIENCES Plant Root Pub Date : 2015-01-01 DOI:10.3117/PLANTROOT.9.56
P. Barlow
{"title":"The concept of the quiescent centre and how it found support from work with X-rays. II. The molecular aftermath","authors":"P. Barlow","doi":"10.3117/PLANTROOT.9.56","DOIUrl":null,"url":null,"abstract":"With the advent of the molecular era of plant biology, the location and activity of the quiescent centre (QC) within the root meristem were reappraised with respect to the transport and distribution of hormones, especially auxin. Later, when methods for probing gene activity became established, the genes and their regulators that were identifiably specific to the QC were also actively studied, at first in relation to the establishment of the root and its QC in the proembryo and later in relation to the interaction of the QC with neighbouring meristem cells. Auxin distribution in and around the QC was found to be associated with co-located oxidative enzymes which established a redox system within the root apex. This system is pivotal in both maintenance of quiescence and the activation of cell proliferation in the QC via the generation of reactive oxygen species (ROS) and their interaction with mitochondria. These and other features of QC biology are summarised.","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3117/PLANTROOT.9.56","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/PLANTROOT.9.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 6

Abstract

With the advent of the molecular era of plant biology, the location and activity of the quiescent centre (QC) within the root meristem were reappraised with respect to the transport and distribution of hormones, especially auxin. Later, when methods for probing gene activity became established, the genes and their regulators that were identifiably specific to the QC were also actively studied, at first in relation to the establishment of the root and its QC in the proembryo and later in relation to the interaction of the QC with neighbouring meristem cells. Auxin distribution in and around the QC was found to be associated with co-located oxidative enzymes which established a redox system within the root apex. This system is pivotal in both maintenance of quiescence and the activation of cell proliferation in the QC via the generation of reactive oxygen species (ROS) and their interaction with mitochondria. These and other features of QC biology are summarised.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静止中心的概念以及它如何从x射线的工作中得到支持。2分子后果
随着植物生物学分子时代的到来,人们重新认识了根分生组织中静止中心(QC)的位置和活性,并对激素尤其是生长素的运输和分布进行了研究。后来,当探测基因活性的方法建立起来时,对可识别的QC特异性基因及其调节因子也进行了积极研究,首先是与根及其QC在原胚中的建立有关,后来是与QC与邻近分生组织细胞的相互作用有关。研究发现,生长素在根尖内和根尖周围的分布与共定位的氧化酶有关,从而在根尖内建立了氧化还原系统。该系统通过活性氧(ROS)的产生及其与线粒体的相互作用,在QC中维持静止和激活细胞增殖中起关键作用。本文总结了QC生物学的这些特点和其他特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Root
Plant Root PLANT SCIENCES-
CiteScore
1.50
自引率
0.00%
发文量
2
期刊介绍: Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.
期刊最新文献
Plant growth-enhancing traits of rhizobacteria isolated from brinjal, okra, and leaf mustard Development of a method for high-throughput quantitation of soil-surface roots of rice (Oryza sativa) and wild rice (O. glumaepatula) using an overhead scanner Acidic soil tolerance of sugarcane and Erianthus root assessed by cell membrane stability Strontium-induced mineral imbalance, cell death, and reactive oxygen species generation in Arabidopsis thaliana Genotypic variation in rice root system distribution and activity in response to short-term soil drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1