{"title":"New Disturbance Rejection Method for Energy Efficient Tunnel Ventilation","authors":"L. Si, W. Cao, Xiangping Chen","doi":"10.37247/aderes2edn.2.2020.3","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative approach for controlling pollutant release in a long-distance tunnel via longitudinal ventilation. Enhanced by an active disturbance rejection control (ADRC) method, a ventilation controller is developed to regulate the forced air ventilation in a road tunnel. As a result, the pollutants (particulate matter and carbon monoxide) are reduced by actively regulating the air flow rate through the tunnel. The key contribution of this study lies in the development of an extended state observer that can track the system disturbance and provide the system with compensation via a nonlinear state feedback controller equipped by the ADRC. The proposed method enhances the disturbance attenuation capability in the ventilation system and keeps the pollutant concentration within the legitimate limit in the tunnel. In addition to providing a safe and clean environment for passengers, the improved tunnel ventilation can also achieve better energy saving as the air flow rate is optimized.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37247/aderes2edn.2.2020.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an innovative approach for controlling pollutant release in a long-distance tunnel via longitudinal ventilation. Enhanced by an active disturbance rejection control (ADRC) method, a ventilation controller is developed to regulate the forced air ventilation in a road tunnel. As a result, the pollutants (particulate matter and carbon monoxide) are reduced by actively regulating the air flow rate through the tunnel. The key contribution of this study lies in the development of an extended state observer that can track the system disturbance and provide the system with compensation via a nonlinear state feedback controller equipped by the ADRC. The proposed method enhances the disturbance attenuation capability in the ventilation system and keeps the pollutant concentration within the legitimate limit in the tunnel. In addition to providing a safe and clean environment for passengers, the improved tunnel ventilation can also achieve better energy saving as the air flow rate is optimized.