Pub Date : 2021-01-01DOI: 10.37247/aderes2edn.2.2021.18
N. Voropai
{"title":"Future Electric Power System Transformations: Prospects and Challenges","authors":"N. Voropai","doi":"10.37247/aderes2edn.2.2021.18","DOIUrl":"https://doi.org/10.37247/aderes2edn.2.2021.18","url":null,"abstract":"","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"19 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69679896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Energy Research. Volume 35","authors":"","doi":"10.52305/eeeq2450","DOIUrl":"https://doi.org/10.52305/eeeq2450","url":null,"abstract":"","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70888970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.37247/ADERES2EDN.2.2021.26
N. Marinescu
This research assesses the evolution of the renewable energy market in Romania. Attracted by a generous support scheme, foreign and domestic investors flocked to the market. Subsequently, the sector witnessed remarkable progress, especially in the wind power category. Romania closed in rapidly on the national target set by the European Union concerning the share of the country‘s energy consumption from renewable sources. However, frequent changes in the support scheme and in the regulations issued by public authorities led to chaos. The aim of the paper is to emphasize the evolution of renewable energy policy in Romania, to investigate the incentives and their effects, and to critically assess the impact of the changes on renewable energy producers. It highlights, by means of an exploratory study and several interviews with executives of renewable energy companies, the challenges and shortcomings of policymaking. The main finding is that the revision of the subsidy scheme and the changes in energy policy that followed are the major determinants for the declining financial performance of renewable energy producers. Some recommendations for improved policymaking so as to re-establish the trust of investors and to foster the sustainable development of the energy sector are suggested in the final part.
{"title":"The Evolution of the Romanian Renewable Energy Market: A Critical Assessment","authors":"N. Marinescu","doi":"10.37247/ADERES2EDN.2.2021.26","DOIUrl":"https://doi.org/10.37247/ADERES2EDN.2.2021.26","url":null,"abstract":"This research assesses the evolution of the renewable energy market in Romania. Attracted by a generous support scheme, foreign and domestic investors flocked to the market. Subsequently, the sector witnessed remarkable progress, especially in the wind power category. Romania closed in rapidly on the national target set by the European Union concerning the share of the country‘s energy consumption from renewable sources. However, frequent changes in the support scheme and in the regulations issued by public authorities led to chaos. The aim of the paper is to emphasize the evolution of renewable energy policy in Romania, to investigate the incentives and their effects, and to critically assess the impact of the changes on renewable energy producers. It highlights, by means of an exploratory study and several interviews with executives of renewable energy companies, the challenges and shortcomings of policymaking. The main finding is that the revision of the subsidy scheme and the changes in energy policy that followed are the major determinants for the declining financial performance of renewable energy producers. Some recommendations for improved policymaking so as to re-establish the trust of investors and to foster the sustainable development of the energy sector are suggested in the final part.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69679684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.37247/aderes2edn.3.2021.4
Jiaying Pan, Yu He, Tao Li, Haiqiao Wei, Lei Wang, G. Shu
{"title":"Effect of Thermo-Atmosphere on Combustion Evolutions of Turbulent Jet Ignition under Engine Conditions","authors":"Jiaying Pan, Yu He, Tao Li, Haiqiao Wei, Lei Wang, G. Shu","doi":"10.37247/aderes2edn.3.2021.4","DOIUrl":"https://doi.org/10.37247/aderes2edn.3.2021.4","url":null,"abstract":"","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69679800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.37247/aderes2edn.3.2021.11
Y. Lee, Sangmin Lee
In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in various microorganisms. The effects of growth conditions on PHB production have been widely studied in chemolithotrophs, particularly in Rhodobacter . However, the results on PHB production in Rhodobacter have been somewhat inconsistent due to different strains and experimental conditions, and it is currently unclear how diverse environmental factors are linked with PHB production. Here, we report optimized growth conditions for PHB production and show that the growth conditions are closely related to reactive oxygen species (ROS) regulation. PHB accumulates in cells up to approximately 50% at the highest level under dark-aerobic conditions as opposed to light aerobic/anaerobic conditions. According to the time-course, PHB contents increased at 48 h and then gradually decreased. When observing the effect of temperature and medium composition on PHB production, 30 °C and a carbon/nitrogen ratio of 9:1 or more were found to be most effective. Among PHB biosynthetic genes, PhaA and PhaB are highly correlated with PHB production, whereas PhaC and PhaZ showed little change in overall expression levels. We found that, while the amount of hydrogen peroxide in cells under dark conditions was relatively low compared to the light conditions, peroxidase activities and expression levels of antioxidant-related genes were high. These observations suggest optimal culture conditions for growth and PHB production and the importance of ROS-scavenging signaling with regard to PHB production.
{"title":"Molecular Profiling and Optimization Studies for PHB Production in Rhodobacter sphaeroides","authors":"Y. Lee, Sangmin Lee","doi":"10.37247/aderes2edn.3.2021.11","DOIUrl":"https://doi.org/10.37247/aderes2edn.3.2021.11","url":null,"abstract":"In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in various microorganisms. The effects of growth conditions on PHB production have been widely studied in chemolithotrophs, particularly in Rhodobacter . However, the results on PHB production in Rhodobacter have been somewhat inconsistent due to different strains and experimental conditions, and it is currently unclear how diverse environmental factors are linked with PHB production. Here, we report optimized growth conditions for PHB production and show that the growth conditions are closely related to reactive oxygen species (ROS) regulation. PHB accumulates in cells up to approximately 50% at the highest level under dark-aerobic conditions as opposed to light aerobic/anaerobic conditions. According to the time-course, PHB contents increased at 48 h and then gradually decreased. When observing the effect of temperature and medium composition on PHB production, 30 °C and a carbon/nitrogen ratio of 9:1 or more were found to be most effective. Among PHB biosynthetic genes, PhaA and PhaB are highly correlated with PHB production, whereas PhaC and PhaZ showed little change in overall expression levels. We found that, while the amount of hydrogen peroxide in cells under dark conditions was relatively low compared to the light conditions, peroxidase activities and expression levels of antioxidant-related genes were high. These observations suggest optimal culture conditions for growth and PHB production and the importance of ROS-scavenging signaling with regard to PHB production.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69679743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjay Mukherjee, A. Asthana, M. Howarth, J. Chowdhury
The food manufacturing sector is one of the most dominant consumers of energy across the globe. Food processing methods such as drying, baking, frying, malting, roasting, etc. rely heavily on the heat released from burning fossil fuels, mainly natural gas or propane. Less than half of this heat contributes to the actual processing of the product and the remaining is released to the surroundings as waste heat, primarily through exhaust gases at 150 to 250 °C. Recovering this waste heat can deliver significant fuel, cost and CO2 savings. However, selecting an appropriate sink for this waste heat is challenging due to the relatively low source temperature. This study investigates a novel application of gas-to-air low temperature waste heat recovery technology for a confectionary manufacturing process, through a range of experiments. The recovered heat is used to preheat a baking oven’s combustion air at inlet before it enters the fuel-air mixture. The investigated technology is compared with other waste heat recovery schemes involving Regenerative Organic Rankine Cycles (RORC), Vapour Absorption Refrigeration (VAR) and hot water production. The findings indicate that utilising an oven’s exhaust gases to preheat combustion air can deliver up to 33% fuel savings, provided a sufficiently large heat sink in the form of oven combustion air is available. Due to a lower investment cost, the technology also offers a payback period of only 1.57 years, which makes it financially attractive when compared to others. The studied waste heat recovery technologies can deliver a CO2 savings of 28–356 tonnes per year from a single manufacturing site. The modelling and comparison methodology, observations and outcomes of this study can be extended to a variety of low temperature food manufacturing processes.
{"title":"Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry","authors":"Sanjay Mukherjee, A. Asthana, M. Howarth, J. Chowdhury","doi":"10.3390/en13236446","DOIUrl":"https://doi.org/10.3390/en13236446","url":null,"abstract":"The food manufacturing sector is one of the most dominant consumers of energy across the globe. Food processing methods such as drying, baking, frying, malting, roasting, etc. rely heavily on the heat released from burning fossil fuels, mainly natural gas or propane. Less than half of this heat contributes to the actual processing of the product and the remaining is released to the surroundings as waste heat, primarily through exhaust gases at 150 to 250 °C. Recovering this waste heat can deliver significant fuel, cost and CO2 savings. However, selecting an appropriate sink for this waste heat is challenging due to the relatively low source temperature. This study investigates a novel application of gas-to-air low temperature waste heat recovery technology for a confectionary manufacturing process, through a range of experiments. The recovered heat is used to preheat a baking oven’s combustion air at inlet before it enters the fuel-air mixture. The investigated technology is compared with other waste heat recovery schemes involving Regenerative Organic Rankine Cycles (RORC), Vapour Absorption Refrigeration (VAR) and hot water production. The findings indicate that utilising an oven’s exhaust gases to preheat combustion air can deliver up to 33% fuel savings, provided a sufficiently large heat sink in the form of oven combustion air is available. Due to a lower investment cost, the technology also offers a payback period of only 1.57 years, which makes it financially attractive when compared to others. The studied waste heat recovery technologies can deliver a CO2 savings of 28–356 tonnes per year from a single manufacturing site. The modelling and comparison methodology, observations and outcomes of this study can be extended to a variety of low temperature food manufacturing processes.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/en13236446","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45210918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades traffic calming, especially in villages situated on through roads, has become an urgent issue. Various schemes are applied in the transition zones to reduce the inbound traffic speeds and thus improve the traffic safety. The studies conducted in several countries point to different determinants of the speed reduction obtained in this way. This article deals with the schemes including a central island horizontally deflecting one lane, located in transition zones to villages with 70 km/h speed restriction on two-lane roads (6 m carriageway width). In order to identify the speed reduction determinants, the speeds before and after chicanes were measured and the effect of the three criteria was investigated, characterising: the traffic management scheme, road design parameters, landscape elements present in the surroundings of the transition zone and visibility conditions. Based on the confirmation of logical tautology of many pre-selected factors, one aggregate parameter was proposed for the assessment of the practicable level of speed reduction, combining the effect of the selected factors in the above-mentioned criteria. Statistical analysis of the obtained results confirmed a statistically significant relationship between both the speed reduction value and the speed reduction index, and the aggregate parameter proposed by the authors. Factors related to the surrounding landscape and visibility conditions were found to have the greatest direct effect on speed reduction. The chicanes chosen in the final step of the proposed design process should be enhanced by additional solar-powered elements ensuring their improved visibility. These devices should not, however, require any additional energy supply and should not increase the construction or maintenance costs.
{"title":"Identification of the Determinants of the Effectiveness of On-Road Chicanes in Transition Zones to Villages Subject to a 70 km/h Speed Limit","authors":"A. Sołowczuk, D. Kacprzak","doi":"10.3390/en13205244","DOIUrl":"https://doi.org/10.3390/en13205244","url":null,"abstract":"In recent decades traffic calming, especially in villages situated on through roads, has become an urgent issue. Various schemes are applied in the transition zones to reduce the inbound traffic speeds and thus improve the traffic safety. The studies conducted in several countries point to different determinants of the speed reduction obtained in this way. This article deals with the schemes including a central island horizontally deflecting one lane, located in transition zones to villages with 70 km/h speed restriction on two-lane roads (6 m carriageway width). In order to identify the speed reduction determinants, the speeds before and after chicanes were measured and the effect of the three criteria was investigated, characterising: the traffic management scheme, road design parameters, landscape elements present in the surroundings of the transition zone and visibility conditions. Based on the confirmation of logical tautology of many pre-selected factors, one aggregate parameter was proposed for the assessment of the practicable level of speed reduction, combining the effect of the selected factors in the above-mentioned criteria. Statistical analysis of the obtained results confirmed a statistically significant relationship between both the speed reduction value and the speed reduction index, and the aggregate parameter proposed by the authors. Factors related to the surrounding landscape and visibility conditions were found to have the greatest direct effect on speed reduction. The chicanes chosen in the final step of the proposed design process should be enhanced by additional solar-powered elements ensuring their improved visibility. These devices should not, however, require any additional energy supply and should not increase the construction or maintenance costs.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/en13205244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42974659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The South African coalmining industry has a rich and long history and contributes significantly to the economic wellbeing of the country. Despite its importance in developing the economy, the industry is causing severe environmental challenges. For example, Emalahleni, a city situated in the Mpumalanga Province in South Africa, has been exposed for over a century to the continuous mining of coal. Challenges experienced include the sterilisation of land due to underground fires, water pollution, surface collapse, and acidification of topsoil. Previous work by the researchers formulated a conceptual framework aimed at addressing some of these challenges. In an extension of this work, the authors comprehensively enhance the preliminary framework on the strength of a set of qualitative propositions coupled with a parallel, exploratory survey. Interviews among various stakeholders were conducted, aimed at enhancing the components of the framework, followed by a focus group to validate the associations among the components of the framework. Aspects reinforced by the survey findings include the role of environmental management accounting, tools like material-flow cost accounting and life-cycle costing, and regulatory and accountability aspects. New aspects elicited from the interviews and the focus group include stakeholder education and training with respect to the value of environmental management accounting for the coalmining industry; adherence to risk management linked to environmental challenges; advanced technologies, for example, financial modelling; and an improved understanding of waste management aspects around acid mine drainage, volatile organic components, CO2 emissions, and post-mine closure. The novelty of the work lies in the approach taken to address coalmining challenges. Previous authors concentrated mostly on scientific and engineering aspects, while this research looks at it from an accounting perspective using environmental management accounting tools to address these challenges.
{"title":"Enhancing a Decision-Making Framework to Address Environmental Impacts of the South African Coalmining Industry","authors":"M. Mbedzi, H. M. van der Poll, J. A. van der Poll","doi":"10.3390/en13184897","DOIUrl":"https://doi.org/10.3390/en13184897","url":null,"abstract":"The South African coalmining industry has a rich and long history and contributes significantly to the economic wellbeing of the country. Despite its importance in developing the economy, the industry is causing severe environmental challenges. For example, Emalahleni, a city situated in the Mpumalanga Province in South Africa, has been exposed for over a century to the continuous mining of coal. Challenges experienced include the sterilisation of land due to underground fires, water pollution, surface collapse, and acidification of topsoil. Previous work by the researchers formulated a conceptual framework aimed at addressing some of these challenges. In an extension of this work, the authors comprehensively enhance the preliminary framework on the strength of a set of qualitative propositions coupled with a parallel, exploratory survey. Interviews among various stakeholders were conducted, aimed at enhancing the components of the framework, followed by a focus group to validate the associations among the components of the framework. Aspects reinforced by the survey findings include the role of environmental management accounting, tools like material-flow cost accounting and life-cycle costing, and regulatory and accountability aspects. New aspects elicited from the interviews and the focus group include stakeholder education and training with respect to the value of environmental management accounting for the coalmining industry; adherence to risk management linked to environmental challenges; advanced technologies, for example, financial modelling; and an improved understanding of waste management aspects around acid mine drainage, volatile organic components, CO2 emissions, and post-mine closure. The novelty of the work lies in the approach taken to address coalmining challenges. Previous authors concentrated mostly on scientific and engineering aspects, while this research looks at it from an accounting perspective using environmental management accounting tools to address these challenges.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/en13184897","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43197667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"System Identification and Resonant Control of Thermoacoustic Engines for Amplified Solar Power","authors":"B. Hong, Tsu-Yu Lin","doi":"10.37247/aer.1.2020.25","DOIUrl":"https://doi.org/10.37247/aer.1.2020.25","url":null,"abstract":"","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69680068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.37247/aderes2edn.2.2020.6
A. Ceschia, T. Azib, O. Béthoux, F. Alves
This paper addresses the issue of optimal sizing reliability applied to a fuel cell/battery hybrid system. This specific problem raises the global problem of strong coupling between hardware and control parameters. To tackle this matter, the proposed methodology uses nested optimization loops. Furthermore, to increase the optimal design relevance, a reliability assessment of the optimal sizing set is introduced. This new paradigm enables showing the early impact of the reliability criteria on design choices regarding energetic performance index. It leads to a smart design methodology permitting to avoid complexity and save computing time. It considerably helps design engineers set up the best hybridization rate and enables practicing tradeoffs, including reliability aspects in the early design stages.
{"title":"Reliability Impact in Optimal Sizing of Fuel Cell/Battery Hybrid Power Sources","authors":"A. Ceschia, T. Azib, O. Béthoux, F. Alves","doi":"10.37247/aderes2edn.2.2020.6","DOIUrl":"https://doi.org/10.37247/aderes2edn.2.2020.6","url":null,"abstract":"This paper addresses the issue of optimal sizing reliability applied to a fuel cell/battery hybrid system. This specific problem raises the global problem of strong coupling between hardware and control parameters. To tackle this matter, the proposed methodology uses nested optimization loops. Furthermore, to increase the optimal design relevance, a reliability assessment of the optimal sizing set is introduced. This new paradigm enables showing the early impact of the reliability criteria on design choices regarding energetic performance index. It leads to a smart design methodology permitting to avoid complexity and save computing time. It considerably helps design engineers set up the best hybridization rate and enables practicing tradeoffs, including reliability aspects in the early design stages.","PeriodicalId":29914,"journal":{"name":"Advances in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69679459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}