{"title":"CNTFET Based Fully Differential First Order All Pass Filter","authors":"M. I. Masud, Iqbal A. Khan","doi":"10.32604/csse.2023.027570","DOIUrl":null,"url":null,"abstract":"A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty of pole frequency in the range of 10.5 to 26 GHz is obtained. Both the circuits are potential candidates for high frequency fully differential analog signal processing applications. As compared to prior state-of-the-art works, both the realized topologies have achieved highest pole frequency and lowest power dissipation. Moreover, they utilize compact circuit structures and suitable for low voltage applications. Moreover, both topologies work equally well in the deep submicron. The proposed filters are analyzed and verified through HPSPICE simulations by utilizing Stanford CNTFET model at 16 nm technology node. It is observed that the proposed circuit simulation outcomes verify the theory.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"44 1","pages":"2425-2438"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/csse.2023.027570","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty of pole frequency in the range of 10.5 to 26 GHz is obtained. Both the circuits are potential candidates for high frequency fully differential analog signal processing applications. As compared to prior state-of-the-art works, both the realized topologies have achieved highest pole frequency and lowest power dissipation. Moreover, they utilize compact circuit structures and suitable for low voltage applications. Moreover, both topologies work equally well in the deep submicron. The proposed filters are analyzed and verified through HPSPICE simulations by utilizing Stanford CNTFET model at 16 nm technology node. It is observed that the proposed circuit simulation outcomes verify the theory.
期刊介绍:
The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication.
All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content.
The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.