Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

IF 2.2 4区 计算机科学 Q2 Computer Science Computer Systems Science and Engineering Pub Date : 2023-06-07 DOI:10.3390/app13126913
Wenshun Sheng, Xiongfeng Yu, Jiayan Lin, Xin Chen
{"title":"Faster RCNN Target Detection Algorithm Integrating CBAM and FPN","authors":"Wenshun Sheng, Xiongfeng Yu, Jiayan Lin, Xin Chen","doi":"10.3390/app13126913","DOIUrl":null,"url":null,"abstract":"In the process of image shooting, due to the influence of angle, distance, complex scenes, illumination intensity, and other factors, small targets and occluded targets will inevitably appear in the image. These targets have few effective pixels, few features, and no obvious features, which makes it difficult to extract their effective features and easily leads to false detection, missed detection, and repeated detection, thus affecting the performance of target detection models. To solve this problem, an improved faster region convolutional neural network (RCNN) algorithm integrating the convolutional block attention module (CBAM) and feature pyramid network (FPN) (CF-RCNN) is proposed to improve the detection and recognition accuracy of small-sized, occluded, or truncated objects in complex scenes. Firstly, it incorporates the CBAM attention mechanism in the feature extraction network in combination with the information filtered by spatial and channel attention modules, focusing on local efficient information of the feature image, which improves the detection ability in the face of obscured or truncated objects. Secondly, it introduces the FPN feature pyramid structure, and links high-level and bottom-level feature data to obtain high-resolution and strong semantic data to enhance the detection effect for small-sized objects. Finally, it optimizes non-maximum suppression (NMS) to compensate for the shortcomings of conventional NMS that mistakenly eliminates overlapping detection frames. The experimental results show that the mean average precision (MAP) of target detection of the improved algorithm on PASCAL VOC2012 public datasets is improved to 76.2%, which is 13.9 percentage points higher than those of the commonly used Faster RCNN and other algorithms. It is better than the commonly used small-sample target detection algorithm.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"68 1","pages":"1549-1569"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/app13126913","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

Abstract

In the process of image shooting, due to the influence of angle, distance, complex scenes, illumination intensity, and other factors, small targets and occluded targets will inevitably appear in the image. These targets have few effective pixels, few features, and no obvious features, which makes it difficult to extract their effective features and easily leads to false detection, missed detection, and repeated detection, thus affecting the performance of target detection models. To solve this problem, an improved faster region convolutional neural network (RCNN) algorithm integrating the convolutional block attention module (CBAM) and feature pyramid network (FPN) (CF-RCNN) is proposed to improve the detection and recognition accuracy of small-sized, occluded, or truncated objects in complex scenes. Firstly, it incorporates the CBAM attention mechanism in the feature extraction network in combination with the information filtered by spatial and channel attention modules, focusing on local efficient information of the feature image, which improves the detection ability in the face of obscured or truncated objects. Secondly, it introduces the FPN feature pyramid structure, and links high-level and bottom-level feature data to obtain high-resolution and strong semantic data to enhance the detection effect for small-sized objects. Finally, it optimizes non-maximum suppression (NMS) to compensate for the shortcomings of conventional NMS that mistakenly eliminates overlapping detection frames. The experimental results show that the mean average precision (MAP) of target detection of the improved algorithm on PASCAL VOC2012 public datasets is improved to 76.2%, which is 13.9 percentage points higher than those of the commonly used Faster RCNN and other algorithms. It is better than the commonly used small-sample target detection algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合CBAM和FPN的快速RCNN目标检测算法
在图像拍摄过程中,由于角度、距离、复杂场景、光照强度等因素的影响,图像中不可避免地会出现小目标和遮挡目标。这些目标有效像素少,特征少,没有明显的特征,难以提取其有效特征,容易导致误检、漏检、重复检测,从而影响目标检测模型的性能。针对这一问题,提出了一种集成卷积块注意模块(CBAM)和特征金字塔网络(FPN) (CF-RCNN)的改进更快区域卷积神经网络(RCNN)算法,以提高复杂场景中小尺寸、遮挡或截断目标的检测和识别精度。首先,在特征提取网络中引入CBAM注意机制,结合空间注意模块和通道注意模块过滤的信息,重点关注特征图像的局部有效信息,提高了面对遮挡或截断目标的检测能力;其次,引入FPN特征金字塔结构,将高层和底层特征数据链接起来,获得高分辨率、强语义的数据,增强对小尺寸目标的检测效果;最后,对非最大抑制(NMS)进行了优化,弥补了传统NMS错误地消除重叠检测帧的缺点。实验结果表明,改进算法在PASCAL VOC2012公开数据集上的目标检测平均精度(MAP)提高到76.2%,比常用的Faster RCNN等算法提高13.9个百分点。它优于常用的小样本目标检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Systems Science and Engineering
Computer Systems Science and Engineering 工程技术-计算机:理论方法
CiteScore
3.10
自引率
13.60%
发文量
308
审稿时长
>12 weeks
期刊介绍: The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication. All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content. The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.
期刊最新文献
Faster RCNN Target Detection Algorithm Integrating CBAM and FPN SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition. WACPN: A Neural Network for Pneumonia Diagnosis. A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1