{"title":"Faster RCNN Target Detection Algorithm Integrating CBAM and FPN","authors":"Wenshun Sheng, Xiongfeng Yu, Jiayan Lin, Xin Chen","doi":"10.3390/app13126913","DOIUrl":null,"url":null,"abstract":"In the process of image shooting, due to the influence of angle, distance, complex scenes, illumination intensity, and other factors, small targets and occluded targets will inevitably appear in the image. These targets have few effective pixels, few features, and no obvious features, which makes it difficult to extract their effective features and easily leads to false detection, missed detection, and repeated detection, thus affecting the performance of target detection models. To solve this problem, an improved faster region convolutional neural network (RCNN) algorithm integrating the convolutional block attention module (CBAM) and feature pyramid network (FPN) (CF-RCNN) is proposed to improve the detection and recognition accuracy of small-sized, occluded, or truncated objects in complex scenes. Firstly, it incorporates the CBAM attention mechanism in the feature extraction network in combination with the information filtered by spatial and channel attention modules, focusing on local efficient information of the feature image, which improves the detection ability in the face of obscured or truncated objects. Secondly, it introduces the FPN feature pyramid structure, and links high-level and bottom-level feature data to obtain high-resolution and strong semantic data to enhance the detection effect for small-sized objects. Finally, it optimizes non-maximum suppression (NMS) to compensate for the shortcomings of conventional NMS that mistakenly eliminates overlapping detection frames. The experimental results show that the mean average precision (MAP) of target detection of the improved algorithm on PASCAL VOC2012 public datasets is improved to 76.2%, which is 13.9 percentage points higher than those of the commonly used Faster RCNN and other algorithms. It is better than the commonly used small-sample target detection algorithm.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"68 1","pages":"1549-1569"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/app13126913","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
In the process of image shooting, due to the influence of angle, distance, complex scenes, illumination intensity, and other factors, small targets and occluded targets will inevitably appear in the image. These targets have few effective pixels, few features, and no obvious features, which makes it difficult to extract their effective features and easily leads to false detection, missed detection, and repeated detection, thus affecting the performance of target detection models. To solve this problem, an improved faster region convolutional neural network (RCNN) algorithm integrating the convolutional block attention module (CBAM) and feature pyramid network (FPN) (CF-RCNN) is proposed to improve the detection and recognition accuracy of small-sized, occluded, or truncated objects in complex scenes. Firstly, it incorporates the CBAM attention mechanism in the feature extraction network in combination with the information filtered by spatial and channel attention modules, focusing on local efficient information of the feature image, which improves the detection ability in the face of obscured or truncated objects. Secondly, it introduces the FPN feature pyramid structure, and links high-level and bottom-level feature data to obtain high-resolution and strong semantic data to enhance the detection effect for small-sized objects. Finally, it optimizes non-maximum suppression (NMS) to compensate for the shortcomings of conventional NMS that mistakenly eliminates overlapping detection frames. The experimental results show that the mean average precision (MAP) of target detection of the improved algorithm on PASCAL VOC2012 public datasets is improved to 76.2%, which is 13.9 percentage points higher than those of the commonly used Faster RCNN and other algorithms. It is better than the commonly used small-sample target detection algorithm.
期刊介绍:
The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication.
All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content.
The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.