Deep Learning and Medical Diagnosis: A Review of Literature

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Multimodal Technologies and Interaction Pub Date : 2018-08-17 DOI:10.3390/MTI2030047
Mihalj Bakator, D. Radosav
{"title":"Deep Learning and Medical Diagnosis: A Review of Literature","authors":"Mihalj Bakator, D. Radosav","doi":"10.3390/MTI2030047","DOIUrl":null,"url":null,"abstract":"In this review the application of deep learning for medical diagnosis is addressed. A thorough analysis of various scientific articles in the domain of deep neural networks application in the medical field has been conducted. More than 300 research articles were obtained, and after several selection steps, 46 articles were presented in more detail. The results indicate that convolutional neural networks (CNN) are the most widely represented when it comes to deep learning and medical image analysis. Furthermore, based on the findings of this article, it can be noted that the application of deep learning technology is widespread, but the majority of applications are focused on bioinformatics, medical diagnosis and other similar fields.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/MTI2030047","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MTI2030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 278

Abstract

In this review the application of deep learning for medical diagnosis is addressed. A thorough analysis of various scientific articles in the domain of deep neural networks application in the medical field has been conducted. More than 300 research articles were obtained, and after several selection steps, 46 articles were presented in more detail. The results indicate that convolutional neural networks (CNN) are the most widely represented when it comes to deep learning and medical image analysis. Furthermore, based on the findings of this article, it can be noted that the application of deep learning technology is widespread, but the majority of applications are focused on bioinformatics, medical diagnosis and other similar fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习与医学诊断:文献综述
本文综述了深度学习在医学诊断中的应用。对深度神经网络在医学领域的应用进行了深入的分析。获得了300多篇研究论文,经过几个选择步骤,比较详细地介绍了46篇文章。结果表明,在深度学习和医学图像分析方面,卷积神经网络(CNN)是最广泛的代表。此外,根据本文的研究结果,可以注意到深度学习技术的应用是广泛的,但大多数应用集中在生物信息学,医学诊断等类似领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multimodal Technologies and Interaction
Multimodal Technologies and Interaction Computer Science-Computer Science Applications
CiteScore
4.90
自引率
8.00%
发文量
94
审稿时长
4 weeks
期刊最新文献
A Wearable Bidirectional Human–Machine Interface: Merging Motion Capture and Vibrotactile Feedback in a Wireless Bracelet Exploring the Role of User Experience and Interface Design Communication in Augmented Reality for Education Recall of Odorous Objects in Virtual Reality Immersive Virtual Colonography Viewer for Colon Growths Diagnosis: Design and Think-Aloud Study How New Developers Approach Augmented Reality Development Using Simplified Creation Tools: An Observational Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1