W. McIntosh, M. Ozturk, L. A. Down, D. Papavassiliou, E. O’Rear
{"title":"Hemodynamics of the renal artery ostia with implications for their structural development and efficiency of flow.","authors":"W. McIntosh, M. Ozturk, L. A. Down, D. Papavassiliou, E. O’Rear","doi":"10.3233/BIR-15069","DOIUrl":null,"url":null,"abstract":"BACKGROUND Energy losses at tube or blood vessel orifices depend on the extent of flare as measured by the dimensionless ratio of the fillet radius of curvature to diameter (r/D). OBJECTIVE The goal of this study was to assess the effect of ostial fillet radii on energy losses at the aorta-renal artery junctions since as much as a quarter of cardiac output passes through the kidneys. METHOD Pressure loss coefficients K for the renal artery ostia as a function of r/D have been determined for representative anatomical variants using finite volume simulations. Estimates of fillet radii in humans from image analysis were employed in simulations for comparison of loss coefficients. RESULTS Values for K drop 45% as r/D increases over the range 0-1.3. Image analysis indicates that the ostia are not symmetric in humans with (r/D)superior much larger than (r/D)inferior. Simulations show the loss coefficient depends almost entirely on the superior fillet radius. CONCLUSIONS Superior fillet radii for both renal arteries are similar to the optimal value to reduce energy losses while the inferior radii are not. Ostial asymmetry may have been induced by higher levels of shear stress present on the superior portion of a developing symmetric ostium of small r/D.","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"52 4 1","pages":"257-68"},"PeriodicalIF":1.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-15069","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-15069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND Energy losses at tube or blood vessel orifices depend on the extent of flare as measured by the dimensionless ratio of the fillet radius of curvature to diameter (r/D). OBJECTIVE The goal of this study was to assess the effect of ostial fillet radii on energy losses at the aorta-renal artery junctions since as much as a quarter of cardiac output passes through the kidneys. METHOD Pressure loss coefficients K for the renal artery ostia as a function of r/D have been determined for representative anatomical variants using finite volume simulations. Estimates of fillet radii in humans from image analysis were employed in simulations for comparison of loss coefficients. RESULTS Values for K drop 45% as r/D increases over the range 0-1.3. Image analysis indicates that the ostia are not symmetric in humans with (r/D)superior much larger than (r/D)inferior. Simulations show the loss coefficient depends almost entirely on the superior fillet radius. CONCLUSIONS Superior fillet radii for both renal arteries are similar to the optimal value to reduce energy losses while the inferior radii are not. Ostial asymmetry may have been induced by higher levels of shear stress present on the superior portion of a developing symmetric ostium of small r/D.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.