{"title":"Mechanobiology of the abluminal glycocalyx.","authors":"P. Butler, A. Bhatnagar","doi":"10.3233/bir-190212","DOIUrl":null,"url":null,"abstract":"BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/bir-190212","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/bir-190212","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 10
Abstract
BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.