A Prussian-Blue Bifunctional Interface Membrane for Enhanced Flexible Al–Air Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-05-21 DOI:10.1002/adfm.202302243
Manhui Wei, Keliang Wang, Yayu Zuo, Liping Zhong, Andreas Züttel, Zhuo Chen, Pengfei Zhang, Hengwei Wang, Siyuan Zhao, Pucheng Pei
{"title":"A Prussian-Blue Bifunctional Interface Membrane for Enhanced Flexible Al–Air Batteries","authors":"Manhui Wei,&nbsp;Keliang Wang,&nbsp;Yayu Zuo,&nbsp;Liping Zhong,&nbsp;Andreas Züttel,&nbsp;Zhuo Chen,&nbsp;Pengfei Zhang,&nbsp;Hengwei Wang,&nbsp;Siyuan Zhao,&nbsp;Pucheng Pei","doi":"10.1002/adfm.202302243","DOIUrl":null,"url":null,"abstract":"<p>Flexible Al–air batteries have attracted widespread attention in the field of wearable power due to the high theoretical energy density of Al metal. However, the efficiency degradation and anodizing retardation caused by Al parasitic corrosion severely limit the performance breakthrough of the batteries. Herein, a Prussian-blue bifunctional interface membrane is proposed to improving the discharge performance of hydrogel-based Al–air battery. When a rational 12 mg·cm<sup>−2</sup> membrane is loaded, the effect of anticorrosion and activation is optimal thanks to the formation of a stable and breathable interface. The results demonstrate that a flexible Al–air battery using the membrane can output a high power density of 65.76 mW·cm<sup>−2</sup>. Besides, the battery can achieve a high capacity of 2377.43 mAh·g<sup>−1</sup>, anode efficiency of 79.78%, and energy density of 3176.39 Wh·kg<sup>−1</sup> at 10 mA·cm<sup>−2</sup>. Density functional theory calculations uncover the anticorrosion-activation mechanism that Fe<sup>3+</sup> with a large number of empty orbitals can accelerate electrons transfer, and nucleophilic reactant [Fe<sup>II</sup>(CN)<sub>6</sub>]<sup>4−</sup> promotes the Al<sup>3+</sup> diffusion. These findings are beneficial to the inhibition of interfacial parasitic corrosion and weakening of discharge hysteresis for flexible Al–air batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 37","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202302243","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Flexible Al–air batteries have attracted widespread attention in the field of wearable power due to the high theoretical energy density of Al metal. However, the efficiency degradation and anodizing retardation caused by Al parasitic corrosion severely limit the performance breakthrough of the batteries. Herein, a Prussian-blue bifunctional interface membrane is proposed to improving the discharge performance of hydrogel-based Al–air battery. When a rational 12 mg·cm−2 membrane is loaded, the effect of anticorrosion and activation is optimal thanks to the formation of a stable and breathable interface. The results demonstrate that a flexible Al–air battery using the membrane can output a high power density of 65.76 mW·cm−2. Besides, the battery can achieve a high capacity of 2377.43 mAh·g−1, anode efficiency of 79.78%, and energy density of 3176.39 Wh·kg−1 at 10 mA·cm−2. Density functional theory calculations uncover the anticorrosion-activation mechanism that Fe3+ with a large number of empty orbitals can accelerate electrons transfer, and nucleophilic reactant [FeII(CN)6]4− promotes the Al3+ diffusion. These findings are beneficial to the inhibition of interfacial parasitic corrosion and weakening of discharge hysteresis for flexible Al–air batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强柔性铝-空气电池的普鲁士-蓝双功能界面膜
柔性铝空气电池由于具有较高的理论能量密度,在可穿戴电源领域受到了广泛的关注。然而,铝寄生腐蚀导致的效率下降和阳极氧化延迟严重限制了电池性能的突破。为了提高水凝胶基铝空气电池的放电性能,提出了一种普鲁士蓝双功能界面膜。当负载合理的12 mg·cm−2膜时,由于形成稳定和透气的界面,防腐和活化效果最佳。结果表明,采用该膜制备的柔性铝空气电池可输出高达65.76 mW·cm−2的功率密度。在10 mA·cm−2下,电池容量达到2377.43 mAh·g−1,阳极效率达到79.78%,能量密度达到3176.39 Wh·kg−1。密度泛函理论计算揭示了具有大量空轨道的Fe3+加速电子转移,亲核反应物[FeII(CN)6]4−促进Al3+扩散的防腐活化机制。这些发现有利于抑制柔性铝空气电池的界面寄生腐蚀和减弱放电滞后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Correction to “Boosting Efficiency and Stability of NiOx-Based Inverted Perovskite Solar Cells through D–A Type Semiconductor Interface Modulation” Light-Directed Microalgae Micromotor with Supramolecular Backpacks for Photodynamic Therapy Accessible and Effective Nanomedicines: Self-Assembly Products From Chinese Herbal Medicines (CHMs) Ink Casting and 3D-Extrusion Printing of Yb14MnSb11 for High-Temperature Thermoelectric Material Dynamically Spreading Shootable Adhesives Inspired by Dough Spinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1