A Hybrid Course Recommendation System by Integrating Collaborative Filtering and Artificial Immune Systems

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2016-07-22 DOI:10.3390/a9030047
P. Chang, Cheng-Hui Lin, Meng-Hui Chen
{"title":"A Hybrid Course Recommendation System by Integrating Collaborative Filtering and Artificial Immune Systems","authors":"P. Chang, Cheng-Hui Lin, Meng-Hui Chen","doi":"10.3390/a9030047","DOIUrl":null,"url":null,"abstract":"This research proposes a two-stage user-based collaborative filtering process using an artificial immune system for the prediction of student grades, along with a filter for professor ratings in the course recommendation for college students. We test for cosine similarity and Karl Pearson (KP) correlation in affinity calculations for clustering and prediction. This research uses student information and professor information datasets of Yuan Ze University from the years 2005–2009 for the purpose of testing and training. The mean average error and confusion matrix analysis form the testing parameters. A minimum professor rating was tested to check the results, and observed that the recommendation systems herein provide highly accurate results for students with higher mean grades.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"9 1","pages":"47"},"PeriodicalIF":2.1000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/a9030047","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a9030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 61

Abstract

This research proposes a two-stage user-based collaborative filtering process using an artificial immune system for the prediction of student grades, along with a filter for professor ratings in the course recommendation for college students. We test for cosine similarity and Karl Pearson (KP) correlation in affinity calculations for clustering and prediction. This research uses student information and professor information datasets of Yuan Ze University from the years 2005–2009 for the purpose of testing and training. The mean average error and confusion matrix analysis form the testing parameters. A minimum professor rating was tested to check the results, and observed that the recommendation systems herein provide highly accurate results for students with higher mean grades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协同过滤和人工免疫系统的混合课程推荐系统
本研究提出了一种基于用户的两阶段协同过滤过程,使用人工免疫系统来预测学生成绩,同时在大学生课程推荐中使用教授评级过滤器。我们在聚类和预测的亲和计算中测试余弦相似性和卡尔皮尔逊(KP)相关性。本研究使用元泽大学2005-2009年的学生信息和教授信息数据集进行测试和训练。平均误差和混淆矩阵分析构成了测试参数。我们测试了最低教授评级来检查结果,并观察到此处的推荐系统为平均成绩较高的学生提供了高度准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Finding Multiple Optimal Solutions to an Integer Linear Program by Random Perturbations of Its Objective Function. Anomaly Detection in High-Dimensional Time Series Data with Scaled Bregman Divergence. Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1