Image Euclidean distance-based manifold dimensionality reduction algorithm for hyperspectral imagery

IF 0.6 4区 物理与天体物理 Q4 OPTICS 红外与毫米波学报 Pub Date : 2013-01-01 DOI:10.3724/sp.j.1010.2013.00450
Che Hong
{"title":"Image Euclidean distance-based manifold dimensionality reduction algorithm for hyperspectral imagery","authors":"Che Hong","doi":"10.3724/sp.j.1010.2013.00450","DOIUrl":null,"url":null,"abstract":"Two nonlinear dimensionality reduction methods were proposed based on image Euclidean distance. Considering the physical characters of hyperspectral imagery,the methods introduced image Euclidean distance into traditional manifold dimensionality reduction. Compared w ith other methods,our methods have several advantages. The introduction of image Euclidean distance not only considers hyperspectral image's spatial relationship,but also preserves the local feature of datasets w ell. Thus the proposed methods can discard efficiently the redundant information from both the spectral and spatial dimensions. The experiment results demonstrated that the proposed methods have higher classification accuracy than other methods w hen applied to hyperspectral image classification.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3724/sp.j.1010.2013.00450","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 7

Abstract

Two nonlinear dimensionality reduction methods were proposed based on image Euclidean distance. Considering the physical characters of hyperspectral imagery,the methods introduced image Euclidean distance into traditional manifold dimensionality reduction. Compared w ith other methods,our methods have several advantages. The introduction of image Euclidean distance not only considers hyperspectral image's spatial relationship,but also preserves the local feature of datasets w ell. Thus the proposed methods can discard efficiently the redundant information from both the spectral and spatial dimensions. The experiment results demonstrated that the proposed methods have higher classification accuracy than other methods w hen applied to hyperspectral image classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于欧氏距离的高光谱图像维数降维算法
提出了两种基于图像欧氏距离的非线性降维方法。考虑到高光谱图像的物理特性,该方法将图像欧氏距离引入到传统的多维降维中。与其他方法相比,我们的方法有几个优点。图像欧几里得距离的引入既考虑了高光谱图像的空间关系,又很好地保留了数据集的局部特征。因此,该方法可以有效地从光谱和空间两个维度去除冗余信息。实验结果表明,该方法在高光谱图像分类中具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
期刊最新文献
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption LiDAR waveform decomposition based on modified differential evolution algorithm Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1